

Catalytic Redox Transformations in Rock Matrices
https://doi.org/10.18412/1816-0387-2017-6-436-441
Abstract
Properties of catalytic systems based on iron oxide and inorganic matrices of oil-bearing rocks (basalt, clay, sandstone) were studied regarding the decomposition of ammonium nitrate, methane oxidation, hydrocracking of asphaltenes. The catalytic systems were iron oxide (hematite with particles of D = 11.0÷20 nm in size, preparation temperature 453–473 K) supported on the matrices through co-hydrolysis of carbamide and iron chloride under hydrothermal conditions at 433–473 K and 0.6–1.6 MPa. Iron oxide catalysts based on basalt and clay were most active to deep oxidation of methane (XCH4 = 83 % and 72.9 % at 773 K, respectively), and Fe2O3 / basalt and Fe2O3 / sandstone systems most active to decomposition of ammonium nitrate. In hydrocracking of asphaltenes to maltene, the catalyst activity decreased in the series: Fe2O3 / basalt > Fe2O3 /clay > Fe2O3 / sandstone, the iron oxide supported on clay being the most selective catalysts. The obtained experimental data indicated practicability of natural materials such as oil-bearing rocks (basalt, clay, sandstone) for the development of catalytic systems to be used in situ in oil reservoirs and advanced technologies for improving the oil recovery.
About the Authors
N. M. DobrynkinRussian Federation
M. V. Batygina
Russian Federation
A. S. Noskov
Russian Federation
References
1. Almao P.P. // The Canadian J. Chem. Eng. 2012. V. 90. P. 320—329. DOI: 10.1002/cjce.21646
2. Hamedi S.Y., Babadagli T. // SPE Reservoir Evaluation and Engineering. 2013. V. 16. N. 3. P. 333-344. https://doi.org/10.2118/146661-PA
3. Peng B., Zhang L., Luo J., Wang P., Ding B., Zengc M.,Cheng Z. // RSC Adv. 2017. Is. 7. P. 32246-32254. DOI: 10.1039/ C7RA05592G.
4. Muggeridge A., Cockin A., Webb K., Frampton H., Collins I., Moulds T., Salino P. // Phil. Trans. R. Soc. 2013 A 372: 20120320. URL: http://dx.doi.org/10.1098/rsta.2012.0320 (дата обращения 10.10.2017).
5. Dobrynkin N.M., Batygina M.V., Noskov A.S. // Journal of Sustainable Development of Energy, Water and Environment Systems. 2017. V. 5. N 3. P. 408-416. DOI: 10.13044/j.sdewes. d5.0151
6. Brown P.L., Ekberg C. Hydrolysis of Metal Ions // Weinheim.: Wiley-VCH Verlag GmbH & Co. KGaA. 2016. P.952.
7. Štajdohar J., Ristić M., Music S. // Journal of Molecular Structure. 2013. V.1044. N 24. P. 290-298. DOI: 10.1016/j. jallcom.2012.04.011.
8. Zhu M., Wang Y., Meng D., Qin X., Diao G. // J.Phys.Chem.C. 2012. V. 116. N 30. P.16276-16285. DOI: 10.1021/jp304410m.
9. Tadic M., Čitakovic N., Panjan M., Stojanovic Z., Markovic D., Spasojevic V. // J. Alloys Compd. 2011. V. 509. N. 28. P. 7639-7644. DOI: 10.1088/2053-1591/1/4/046104.
10. Kandori K., Ishikawa T. // Colloid Polym. Sci. 2004. V. 282.N.10. P. 1118—1125. DOI: 10.1016/j.jcis.2003.08.075.
11. Воскресенский П.И. Техника лабораторных работ // М.: Химия, 1973. C. 717.
12. Snyder R.L., Fiala J., Bunge H.J. Defect and Microstructure Analysis by Diffraction // New York: International Union of Crystallography, Oxford University Press. 1999. P. 808.
13. Savara A., Li M.-J., Sachtler W.M.H., Weitz E. // Appl. Catal. B. 2008. V. 81. P. 251-257. DOI: 10.1016/j.apcatb.2007.12.008.
14. Vandegrift G.F. // Technical Report ANL-00/25. 2000. URL: http://www.ipd.anl.gov/anlpubs/2000/12/38162.pdf (дата обращения 11.10.2017).
15. Мороз Н.А., Кобзев А.В., Лобойко А.Я., Багдасарян В.С.,Ворожбиян М.И. // Интегрированные технологии и энергосбережение. 2004. № 1. С. 82. URL: http://repository.kpi.kharkov.ua/bitstream/KhPI-Press/2231/1/ITE_2004_1_Kobzev_Izucheniye%20protsessa.pdf (дата обращения10.11.2017).
Review
For citations:
Dobrynkin N.M., Batygina M.V., Noskov A.S. Catalytic Redox Transformations in Rock Matrices. Kataliz v promyshlennosti. 2017;17(6):436-441. (In Russ.) https://doi.org/10.18412/1816-0387-2017-6-436-441