

The Influence of the Composition of Molybdenum Modified NiCu-Containing Catalysts on the Activity and Selectivity to Hydrogenation of Furfural to Produce Valuable Chemicals
https://doi.org/10.18412/1816-0387-2017-6-517-526
Abstract
The influence of the composition of molybdenum modified NiCu-containing catalysts on the activity and selectivity to hydrogenation of furfural – a product of acid hydrolysis of hemicellulose biomass – was studied. The initial NiCu catalyst was prepared by the sol-gel method and stabilized with 10 wt % SiO2 by impregnating the calcined sol-gel with ethyl silicate. Molybdenum was introduced in the form of oxide Mo(VI) on the stage of blending of oxide precursors of the metals. Selective hydrogenation of furfural was achieved using a batch reactor at 100–200 °C and 6 MPa of hydrogen. It was established that the rise of the process temperature led to an increase in the yields of 2-methylfurane and complete hydrogenation products. At low process temperatures, 2-methylfurane practically was not formed but furfuryl and tetrahydrofurfuryl alcohols were the main products. In comparison to the NiCu systems, the modified NiCuMo-SiO2 catalysts were more active to hydrogenation of furfural and more selective to 2-methylfurane; this may be accounted for by the formation of solid NiMo(Cu) solutions and by the formation of Mox+ on the catalyst surface.
About the Authors
A. A. SmirnovRussian Federation
I. N. Shilov
Russian Federation
M. V. Alekseeva
Russian Federation
S. A. Selishcheva
Russian Federation
V. A. Yakovlev
Russian Federation
References
1. Zhang L., Xi G., Yu K., Yu H., Wang X. // Industrial Crops and Products. 2017. V. 98. № Supplement C. P. 68-75.
2. Chen X., Yang H., Chen Y., Chen W., Lei T., Zhang W., Chen H. // Journal of Analytical and Applied Pyrolysis. 2017. V. 127. № Supplement C. P. 292-298.
3. Stocker M. // Angew Chem Int Ed Engl. 2008. V. 47. № 48. P. 9200-9211.
4. Mamman A.S., Lee J.-M., Kim Y.-C., Hwang I.T., Park N.-J., Hwang Y.K., Chang J.-S., Hwang J.-S. // Biofuels, Bioproducts and Biorefining. 2008. V. 2. № 5. P. 438-454.
5. Lange J.-P., van der Heide E., van Buijtenen J., Price R. // ChemSusChem. 2012. V. 5. № 1. P. 150-166.
6. Hoydonckx H.E., Van Rhijn W.M., Van Rhijn W., De Vos D.E., Jacobs P.A. Furfural and Derivatives // Ullmann's Encyclopedia of Industrial Chemistry / Ed. Wiley-VCH Verlag GmbH & Co. KGaA, 2007. P. 29.
7. Yan K., Wu G., Lafleur T., Jarvis C. // Renewable and Sustainable Energy Reviews. 2014. V. 38. P. 663-676.
8. Ma X., Jiang C., Xu H., Ding H., Shuai S. // Fuel. 2014. V. 116. № Supplement C. P. 281-291.
9. Bremner J.G.M., Keeys R.K.F. // Journal of the Chemical Society (Resumed). 1947. P. 1068-1080.
10. Wojcik B.H. // Industrial & Engineering Chemistry. 1948. V. 40. № 2. P. 210-216.
11. Ordomsky V.V., Schouten J.C., van der Schaaf J., Nijhuis T.A. // Applied Catalysis A: General. 2013. V. 451. № Supplement C. P. 6-13.
12. Taylor M.J., Durndell L.J., Isaacs M.A., Parlett C.M.A., Wilson K., Lee A.F., Kyriakou G. // Applied Catalysis B: Environmental. 2016. V. 180. № Supplement C. P. 580-585.
13. Yuan Q., Zhang D., Haandel L.v., Ye F., Xue T., Hensen E.J.M., Guan Y. // Journal of Molecular Catalysis A: Chemical. 2015. V. 406. № Supplement C. P. 58-64.
14. Ardiyanti A.R., Khromova S.A., Venderbosch R.H., Yakovlev V.A., Heeres H.J. // Applied Catalysis B: Environmental. 2012. V. 117-118. № 0. P. 105-117.
15. Yakovlev V.A., Khromova S.A., Sherstyuk O.V., Dundich V.O., Ermakov D.Y., Novopashina V.M., Lebedev M.Y., Bulavchenko O., Parmon V.N. // Catalysis Today. 2009. V. 144. № 3-4. P. 362-366.
16. Khromova S.A., Smirnov A.A., Bulavchenko O.A., Saraev A.A., Kaichev V.V., Reshetnikov S.I., Yakovlev V.A. // Applied Catalysis A: General. 2014. V. 470. P. 261-270.
17. Smirnov A.A., Khromova S.A., Ermakov D.Y., Bulavchenko O.A., Saraev A.A., Aleksandrov P.V., Kaichev V.V., Yakovlev V.A. // Applied Catalysis A: General. 2016. V. 514. № P. 224-234.
18. Smirnov A.A., Geng Z., Khromova S.A., Zavarukhin S.G., Bulavchenko O.A., Saraev A.A., Kaichev V.V., Ermakov D.Y., Yakovlev V.A. // Journal of Catalysis. 2017. V. 354. № Supplement C. P. 61-77.
19. Bykova M.V., Ermakov D.Y., Khromova S.A., Smirnov A.A., Lebedev M.Y., Yakovlev V.А. // Catalysis Today. 2014. V. 220-222. № P. 21-31.
20. Ermakova M.A., Ermakov D.Y. // Applied Catalysis A: General. 2003. V. 245. № 2. P. 277-288.
21. Kukushkin R.G., Bulavchenko O.A., Kaichev V.V., Yakovlev V.A. // Applied Catalysis B: Environmental. 2015. V. 163. P. 531-538.
22. Williams C.C., Ekerdt J.G. // The Journal of Physical Chemistry. 1993. V. 97. № 26. P. 6843-6852. 23. PDF. # 04-0850
23. PDF. # 44-1159
24. PDF. # 04-0836
25. PDF. # 42-1120
26. Sinfelt J.H., Carter J.L., Yates D.J.C. // Journal of Catalysis. 1972. V. 24. № 2. P. 283-296.
27. Kim S., Kim M.C., Choi S.-H., Kim K.J., Hwang H.N., Hwang C.C. // Applied Physics Letters. 2007. V. 91. № 10. P. 103113–103113-3.
28. Poulston S., Parlett P.M., Stone P., Bowker M. // Surface and Interface Analysis. 1996. V. 24. № 12. P. 811-820.
29. McIntyre N.S., Cook M.G. // Analytical Chemistry. 1975. V. 47. № 13. P. 2208-2213.
30. Bykova M.V., Ermakov D.Y., Kaichev V.V., Bulavchenko O.A., Saraev A.A., Lebedev M.Y., Yakovlev V.А. // Applied Catalysis B: Environmental. 2012. V. 113-114. № P. 296-307.
31. Robertson S.D., McNicol B.D., De Baas J.H., Kloet S.C., Jenkins J.W. // Journal of Catalysis. 1975. V. 37. № 3. P. 424- 431.
32. Bianchi C.L., Cattania M.G., Villa P. // Applied Surface Science. 1993. V. 70-71, Part 1. № P. 211-216.
33. DeCanio S.J., Cataldo M.C., DeCanio E.C., Storm D.A. // Journal of Catalysis. 1989. V. 119. № 1. P. 256-260.
34. Óvári L., Kiss J., Farkas A.P., Solymosi F. // The Journal of Physical Chemistry B. 2005. V. 109. № 10. P. 4638-4645.
35. Khromova S.A., Bykova M.V., Bulavchenko O.A., Ermakov D.Y., Saraev A.A., Kaichev V.V., Venderbosch R.H., Yakovlev V.A. // Topics in Catalysis. 2016. V. 59. № 15. P. 1413-1423.
36. Kim M.S., Simanjuntak F.S.H., Lim S., Jae J., Ha J.-M., Lee H. // Journal of Industrial and Engineering Chemistry. 2017. V. 52. № Supplement C. P. 59-65.
37. Wei S., Cui H., Wang J., Zhuo S., Yi W., Wang L., Li Z. // Particuology. 2011. V. 9. № 1. P. 69-74.
38. J. Lei, Q. Shi. Effect of Mo on properties of Ni—B/γ-Al2O3 amorphous alloy catalyst for liquid-phase furfural hydrogenation to furfural alcohol // Nonferrous Metals, 59 (3) (2007), pp. 58- 61 (in Chinese).
39. Koso S., Nakagawa Y., Tomishige K. // Journal of Catalysis. 2011. V. 280. № 2. P. 221-229.
40. Koso S., Ueda N., Shinmi Y., Okumura K., Kizuka T., Tomishige K. // Journal of Catalysis. 2009. V. 267. № 1. P. 89-92.
Review
For citations:
Smirnov A.A., Shilov I.N., Alekseeva M.V., Selishcheva S.A., Yakovlev V.A. The Influence of the Composition of Molybdenum Modified NiCu-Containing Catalysts on the Activity and Selectivity to Hydrogenation of Furfural to Produce Valuable Chemicals. Kataliz v promyshlennosti. 2017;17(6):517-526. (In Russ.) https://doi.org/10.18412/1816-0387-2017-6-517-526