Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Development of Effective Cobalt Catalysts for Hydrogen-Generating Solid Phase Compositions Based on Sodium Borane

https://doi.org/10.18412/1816-0387-2017-6-527-533

Abstract

Hydrogen-generating solid phase compositions based on sodium boran are promising systems for storage and transportation of hydrogen to be used for low-temperature fuel cells with proton-exchange membranes. Catalysts are added to the compositions in order to generate hydrogen at ambient temperature. The studies were focused on the influence of conditions of the cobalt catalysts preparation on the rate of gasgeneration. The efficiency of hydrogen evolution depended on the nature of the cobalt salt and pH of its aqueous solution where the active component precursor was reduced under the action of the hydride; these factors determined the composition, dispersion and magnetic behavior of the cobalt systems. The maximal rate of gas generation (505 cm3/min per 1 g of the composition containing 8.4 wt % of hydrogen) was observed in the presence of the sample reduced by sodium borane in a cobalt chloride solution with pH 1.3. The results obtained can be used to develop effective and inexpensive cobalt catalysts for generation of hydrogen from solid compositions based on sodium borane.

About the Authors

O. V. Netzkinia
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


O. V. Komova
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


V. I. Simagina
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


References

1. Okumus E., Boyaci San F.G., Okur O., Turk B.E., Cengelci E., Kilic M., Karadag C., Cavdar M., Turkmen A., Yazici M.S. // International Journal of Hydrogen Energy. 2017. V. 42, № 4. P. 2691-2697.

2. Nunes H.X., Ferreira M.J.F., Rangel C.M., Pinto A.M.F.R. // International Journal of Hydrogen Energy. 2016. V. 41. № 34. P. 15426-15432.

3. Li S.-C., Wang F.-C. // International Journal of Hydrogen Energy. 2016. V. 41. № 4. P. 3038-3051.

4. Wang L., Li Z., Zhang Y., Zhang T., Xie G. // Journal of Alloys and Compounds. 2017. V. 702. P. 649-658

5. Нецкина О.В., Комова О.В., Симагина В.И. // Журнал прикладной химии. 2016. Т. 89. №.10. С. 1305—1311.

6. Wei L., Ma M., Lu Y., Zhang S., Gao J., Dong X. // Functional Materials Letters. 2017. V. 10, № 5. P. 1750065.

7. Eugénio S., Demirci U.B., Silva T.M., Carmezim M.J., Montemor M.F. // International Journal of Hydrogen Energy. 2016. V. 41. № 20. P. 8438-8448.

8. Park D., Kim T. // Journal of Nanoscience and Nanotechnology. 2016. V. 16, № 2. P. 1740-1743.

9. Oh T.H., Gang B.G., Kim H., Kwon S. // Energy. 2015. V. 90. № 1. P. 1163-1170.

10. Yang J., Cheng F., Liang J., Chen J. // International Journal of Hydrogen Energy. 2011. V. 36. № 2. P. 1411-1417.

11. Dai H.-B., Liang Y., Wang P., Cheng H.-M. // Journal of Power Sources. 2008. V. 177. № 1. P. 17-23.

12. Kojima Y., Suzuki K.-I., Fukumoto K., Kawai Y., Kimbara M., Nakanishi H., Matsumoto S. // Journal of Power Sources. 2004. V. 125, № 1. P. 22-26.

13. Marchionni A., Bevilacqua M., Filippi J., Folliero M.G., Innocenti M., Lavacchi A., Miller H.A., Pagliaro M.V., Vizza F. // Journal of Power Sources. 2015. V. 299. P. 391-397.

14. Minkina V.G., Shabunya S.I., Kalinin V.I., Martynenko V.V., Smirnova A.L. // International Journal of Hydrogen Energy. 2012. V. 37. № 4. P. 3313-3318.

15. Minkina V.G., Shabunya S.I., Kalinin V.I., Martynenko V.V., Smirnova A.L. // Int International Journal of Hydrogen Energy. 2008. V. 33. № 20. P. 5629-5635.

16. Netskina O.V., Komova O.V., Mukha S.A., Simagina V.I. // Catalysis Communications. 2016. V. 85. P. 9-12.

17. Netskina O.V., Komova O.V., Simagina V.I., Odegova G.V., Prosvirin I.P., Bulavchenko O.A. // Renewable Energy. 2016. V. 99. P. 1073-1081.

18. Liu C.-H., Chen B.-H., Hsueh C.-L., Ku J.-R., Tsau F. // Journal of Power Sources. 2010. V. 195. № 12. P. 3887-3892. Liu C.-H., Kuo Y.-C., Chen B.-H., Hsueh C.-L., Hwang K.-J., Ku J.-R., Tsau F., Jeng M.-S. // International Journal of Hydrogen Energy. 2010. V. 35. № 9. P. 4027-4040.

19. Liu B.H., Li Z.P., Suda S. // Journal of Alloys and Compounds. 2009. V. 468. № 1-2. P. 493-498.

20. Netskina O.V., Ozerova A.M., Komova O.V., Odegova G.V., Simagina V.I. // Catalysis Today. 2015. V. 245. P. 86-92.

21. Hsueh C.-L., Liu C.-H., Chen B.-H., Lee M.-S., Chen C.-Y., Lu Y.-W., Tsau F., Ku J.-R. // Journal of Power Sources. 2011. V. 196. № 7. P. 3530—3538.

22. Gislon P., Monteleone G., Prosini P.P. // International Journal of Hydrogen Energy. 2009. V. 34. № 2. P. 929-937. Ferreira M.J.F., Gales L., Fernandes V.R., Rangel C.M., Pinto A.M.F.R. // International Journal of Hydrogen Energy. 2010. V. 35. № 18. P. 9869-9878.

23. Kim J.-H., Choi K.-H., Choi Y.S. // International Journal of Hydrogen Energy. 2010. V. 35. № 9. P. 4015-4019.

24. Duke B.J., Gulbert J.R., Read I.A. // Journal of the Chemical Society A: Inorganic, Physical, Theoretical. 1964. P. 540-542.

25. Simagina V.I., Ozerova A.M., Komova O.V., Odegova G.V., Kellerman D.G., Fursenko R.V., Odintsov E.S., Netskina O.V. // Catalysis Today. 2015. V. 242A. P. 221-229.


Review

For citations:


Netzkinia O.V., Komova O.V., Simagina V.I. Development of Effective Cobalt Catalysts for Hydrogen-Generating Solid Phase Compositions Based on Sodium Borane. Kataliz v promyshlennosti. 2017;17(6):527-533. (In Russ.) https://doi.org/10.18412/1816-0387-2017-6-527-533

Views: 683


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)