Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Micro-Mesoporous Carbon Materials from Carbonized Rice Husk as Active Components of Supercondenser Electrodes

https://doi.org/10.18412/1816-0387-2017-6-534-542

Abstract

Activated carbon materials (CM) were prepared from rice husk carbonized in a fluidized bed reactor. Low temperature nitrogen adsorption at 77 K was used for characterizing the EM texture. Variations in the preparation conditions (carbonization followed by activation) allowed the materials to be synthesized with the BET surface area from 440 to 2290 m2/g. Application of potassium or sodium carbonates as activating agents led to the formation of CM with the BET surface area up to 1200 m2/g. CM with a larger surface area – up to 2290 m2/g – were obtained upon activation with sodium hydroxides. Electrochemical properties and capacitive characteristics were studied using voltammetry and chronopotentiometry in the galvanostatic mode in aqueous 1M H2SO4 electrolyte and ionic liquid BMIMBF4. At low charging/discharging rates (0.2 A/g), a linear dependence of bulk capacity on the specific surface area of CM but not on the electrolyte nature was shown. At high charging/discharging rates (2 A/g), negligible or considerable decrease in the specific capacity was observed in 1M H2SO4 and in the ionic liquid, respectively. These observations were accounted for by the influence of the porous structure.

About the Authors

M. V. Lebedeva
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


P. M. Eletski
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


A. B. Ayupov
Boreskov Institute of Catalysis, Novosibirsk; Novosibirsk State University
Russian Federation


F. N. Kuznetsov
Boreskov Institute of Catalysis, Novosibirsk; Novosibirsk State University
Russian Federation


E. N. Gribov
Boreskov Institute of Catalysis, Novosibirsk; Novosibirsk State University
Russian Federation


V. N. Parmon
Boreskov Institute of Catalysis, Novosibirsk; Novosibirsk State University
Russian Federation


References

1. Burke A. // Electrochim. Acta. 2007. V. 53. № 3. P. 1083-1091.

2. Conte M. // Fuel Cells. 2010. V. 10. № 5. P. 806-818.

3. Zhang Y., Feng H., Wu X., Wang L., Zhang A., Xia T., Dong H., Li X., Zhang L. // Int. J. Hydrogen Energy. 2009. V. 34. № 11. P. 4889-4899.

4. Ito E., Mozia S., Okuda M., Nakano T., Toyoda M., Inagaki M. // New Carbon Mater. 2007. V. 22. № 4. P. 321-326.

5. Bichat M.P., Raymundo-Piñero E., Béguin F. // Carbon. 2010. V. 48. № 15. P. 4351-4361.

6. Long C., Jiang L., Wu X., Jiang Y., Yang D., Wang C., Wei T., Fan Z. // Carbon. 2015. V. 93. P. 412-420.

7. Peng C., Yan X., Wang R., Lang J., Ou Y., Xue Q. // Electrochim. Acta. 2013. V. 87. P. 401-408.

8. Bleda-Martínez M.J., Maciá-Agulló A., Lozano-Castelló D., Morallón E., Cazorla-Amorósa D., Linares-Solano A. // Carbon. 2005. V. 43. № 13. P. 2677-2684.

9. Raymundo-Piñero E., Kierzek K., Machnikowski J., Béguin F. // Carbon. 2006. V. 44. № 12. P. 2498-2507.

10. Alonso A., Ruiz V., Blanco C., Santamaría R., Granda M., Menéndez R., de Jager S.G.E. // Carbon. 2006. V. 44. № 3. P. 441-446.

11. Kim Y.-J., Horie Y., Matsuzawa Y., Ozaki S., Endo M., Dresselhaus M.S. // Carbon. 2004. V. 42. № 12-13. P. 2423- 2432.

12. Li Q.-Y., Wang H.-Q., Dai Q.-F., Yang J.-H., Zhong Y.-L. // Solid State Ionics. 2008. V. 179. № 7-8. P. 269-273.

13. Jurewicz K., Frackowiak E., Béguin F. // Appl. Phys. A. 2004. V. 78. № 7. P. 981-987.

14. Vix-Guterl C., Frackowiak E., Jurewicz K., Friebeb M., Parmentier J., Béguin F. // Carbon. 2005. V. 43. № 6. P. 1293- 1302.

15. Morishita T., Soneda Y., Tsumura T., Inagaki M. // Carbon. 2006. V. 44. № 12. P. 2360-2367.

16. Lu X., Dou H., Gao B., Yuan C., Yang S., Hao L., Shen L., Zhang X. // Electrochim. Acta. 2011. V. 56. № 14. P. 5115-5121.

17. Zhang L.L., Wei T., Wang W., Zhao X.S. // Micropor. Mesopor. Mater. 2009. V. 123. № 1-3. P. 260-267.

18. Wang G., Ling Y., Qian F., Yang X., Liu X.-X., Li Y. // J. Power Sources. 2011. V. 196. № 11. P. 5209-5214.

19. Рычагов А.Ю., Вольфкович Ю.М., Воротынцев М.А., Квачева Л.Д., Конев Д.В., Крестинин А.В., Кряжев Ю.Г., Кузнецов В.Л., Кукушкина Ю.А., Мухин В.М., Соколов В.В., Червонобродов С.П. // Электрохим. энергетика. 2012. Т. 12. № 4. С. 167—180.

20. Бахматюк Б.П., Курепа А.С. // Электрохим. энергетика. 2011. Т. 11. № 4. С. 206—212.

21. Атаманюк И.Н., Вервикишко Д.Е., Григоренко А.В., Саметов А.А., Школьников Е.И., Янилкин И.В. // Электрохим. энергетика. 2014. Т. 14. № 1. С. 3—10.

22. Liu M.-C., Kong L.-B., Zhang P., Luo Y.-C., Kang L. // Electrochim. Acta. 2012. V. 60. P. 443-448.

23. Wang K., Zhao N., Lei S., Yan R., Tian X., Wang J., Song Y., Xu D., Guo Q., Liu L. // Electrochim. Acta. 2015. V. 166. P. 1-11.

24. Redondo E., Carretero-González J., Goikolea E., Ségalini J., Mysyk R. // Electrochim. Acta. 2015. V. 160. P. 178-184.

25. Eletskii P.M., Yakovlev V.A., Fenelonov V.B., Parmon V.N. // Kinet. Catal. 2008. V. 49. № 5. P. 708-719.

26. Larichev Y.V., Yeletsky P.M., Yakovlev V.A. // J. Phys. Chem. Solids. 2015. V. 87. P. 58-63.

27. Yeletsky P.M., Yakovlev V.A., Mel'gunov M.S., Parmon V.N. // Micropor. Mesopor. Mater. 2009. V. 121. № 1-3. P. 34-40.

28. Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez- Reinoso F., Rouquerol J., Sing K.S.W. // Pure Appl. Chem. 2015. V. 87. № 9-10. P. 1051-1069.

29. Mel'gunov M.S., Ayupov A.B. // Micropor. Mesopor. Mater. 2017. V. 243. P. 147-153.

30. Kinoshita K. Carbon: electrochemical and physicochemical properties. New York: John Wiley Sons, 1988. 533 p.

31. Dullius J.E.L., Suarez P.A.Z., Einloft S., de Souza R.F., Dupont J. // Organometallics. 1998. V. 17. № 5. P. 815-819.

32. Pell W.G., Conway B.E., Marincic N. // J. Electroanal. Chem. 2000. V. 491. № 1-2. P. 9-21.

33. Pell W.G., Conway B.E., Adams W.A., de Oliveira J. // J. Power Sources. 1999. V. 80. № 1-2. P. 134-141.

34. Stoller M.D., Ruoff R.S. // Energy Environ. Sci. 2010. V. 3. P. 1294-1301.

35. Van K.L., Thi T.T.L. // Progress in Natural Science: Materials International. 2014. V. 24. № 3. P. 191-198.

36. Kumagai S., Tashima D. // Biomass Bioenergy 2015. V. 83. P. 216-223.

37. Gao Y., Li L., Jin Y., Wang Y., Yuan C., Wei Y., Chen G., Ge J., Lu H. // Appl. Energy. 2015. V. 153. P. 41-47.

38. Jiang J. // J. Electrochem. Soc. 2017. V. 164. № 8. P. H5043-H5048.

39. Lockett V., Sedev R., Ralston J. // J. Phys. Chem. C. 2008. V. 112. № 19. P. 7486-7495.

40. Zheng J., Moganty S.S., Goonetilleke P.C., Baltus R.E., Roy D. // J. Phys. Chem. C. 2011. V. 115. № 15. P. 7527-7537.

41. Wang X., Zhou H., Sheridan E., Walmsley J.Ch., Ren D., Chen D. // Energy Environ. Sci. 2016. V. 9. P. 232-239.

42. Chmiola J., Yushin G., Gogotsi Y., Portet C., Simon P., Taberna P.L. // Science. 2006. V. 313. № 5794. P. 1760-1763.


Review

For citations:


Lebedeva M.V., Eletski P.M., Ayupov A.B., Kuznetsov F.N., Gribov E.N., Parmon V.N. Micro-Mesoporous Carbon Materials from Carbonized Rice Husk as Active Components of Supercondenser Electrodes. Kataliz v promyshlennosti. 2017;17(6):534-542. (In Russ.) https://doi.org/10.18412/1816-0387-2017-6-534-542

Views: 692


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)