

Development of Methods for Synthesis of Quality Hydrolyzates Based on the Integration of Catalytic Processes of Peroxide Delignification and Acid Hydrolysis of Birchwood
https://doi.org/10.18412/1816-0387-2017-6-543-553
Abstract
The traditional processes of catalytic acid hydrolysis of wood are low effective due to the low quality of the formed glucose solutions contaminated with admixtures that inhibit fermentation of glucose to ethanol. This is a particularly acute problem in hydrolysis of birchwood containing hemicelluloses in large proportions. In the present paper, quality glucose solutions are suggested to produce via sulfuric acid hydrolysis (80 % H2SO4, 25 °C) of cellulose products formed during catalytic peroxide delignification of birchwood. The composition of the cellulose products are established to affect considerably the content of glucose, xylose and admixtures (furfural, 5-hydroxymethylfurfural, levulinic acid) in glucose, which inhibit enzymatic synthesis of bioethanol. High yields of glucose (80.4–83.5 wt %) are achieved with cellulose products prepared by integrated processes of sulfuric acid hydrolysis of birchwood hemicelluloses and peroxide delignification of pre-hydrolyzed wood in the presence of catalysts 2 % H2SO4 and 1 % TiO2. Concentrations of inhibitors of enzymatic processes are lower of the admissible levels in these hydrolyzates. The hydrolyzates with the maximal glucose content (86.4–88.5 wt %) and minimal concentration of inhibiting impurities are prepared by acid hydrolysis of cellulose products treated with 18 % NaOH. The hydrolyzate composition was studied using gas chromatography, HELC, chromatomass spectroscopy. IRS, XPS and chemical techniques were used for characterization of cellulose products.
About the Authors
B. N. KuznetsovRussian Federation
N. V. Chesnokov
Russian Federation
O. V. Yatsenkova
Russian Federation
I. G. Sudakova
Russian Federation
A. M. Skripnikov
Russian Federation
N. G. Beregovtsova
Russian Federation
V. I. Sharypov
Russian Federation
References
1. Almeida J., Modig T., Petersson A., Hähn-Hägerdal B., Liden G., Gorwa-Grauslund M. // Journal of Chemical Technology and Biotechnology. 2007. V. 82. P. 340—349.
2. Lin Y., Tanaka S. // Appl. Microbial. Biotechnol. 2006. V. 69. P. 627—642.
3. Taherzadeh M.J., Karimi K. // BioResources. 2007. V. 2. N 3. P. 472—499.
4. Fengel D., Wegener G. Wood: chemistry, ultrustructure, reactions. 1984. Walter de Gruter. Berlin.
5. Hu G., Heitmann J.A., Rojas O. // BioResources. 2008. V. 3. N 1. P. 270—294.
6. Кузнецов Б.Н., Кузнецова С.А., Данилов В.Г., Тарабанько В.Е. // Химия в интересах устойчивого развития. 2005. Т. 13. № 4. С. 531—539. [Kuznetsov B.N., Kuznetsova S.A., Danilov V.A., Taraban’ko V.E. // Chemistry for Sustainable Development. 2005. V. 13. N 4. P. 531—539].
7. Brazdausks P., Puke M., Vedernikovs N., Kruma I. // Environmental and climate technologies. 2013. V. 11. P. 478—485.
8. Li H., Saeed A., Jahan S., Ni J., Heiningen A. // Journal of Wood Chemistry and Technology. 2010. V. 30. P. 48—60.
9. Amiri H., Karimi K. // Industrial & Engineering Chemistry Research. 2013. V. 52. P. 11494—11501.
10. Barana D., Salanti A., Orlandi M., Ali D.S., Zoia L. // Industrial Crops and Products. 2016. V. 86. P. 31—39.
11. Singh D.P., Trivedi R.K. // Int. J. Chem. Tech. Res. 2013. V. 5. N 2. P. 727—734.
12. Guo B., Zhang Y., Yu G., Lee W.H., Jin Y.-S., Morgenroth E. // Appl. Biochem. Biotechnol. 2013. Vol. 169. P. 1069—1087.
13. Bose S.K., Barber V.A., Ericka F.A. // Carbohydrate Polymers. 2009. V. 78. P. 396—401.
14. Borrega M., Nieminen K., Sixta H. // BioResource. 2011. V. 6. N 2. P. 1890—1903.
15. Hamelinck C.N., Hooijdonk G., Faaij A.P.C. // Biomass and Bioenergy. 2005. V. 28. P. 384—410.
16. Kuznetsov B. N., Tarabanko V.E., Kuznetsova S.A. // Kinetic and Catalysis. 2008. V. 49. P. 517—526.
17. Kuznetsov B.N., Kuznetsova S.A., Danilov V.G., Yatsenkova O.V. // React. Kinet. Mech. Cat. 2011. 104. P. 337—343.
18. Kuznetsov B.N., Sudakova I.G., Garyntseva N.V., Djakovitch L., Pinel C. // React. Kinet. Mech. Cat. 2013. V. 110. P. 271—280.
19. Yang Z., Kang H., Guo Y. et al. // Industrial Crops and Products. 2013. V. 46. P. 205—209.
20. Zhao X., Zhou Y., Liu D. // Bioresource Technology. 2012. V. 105. P. 160—168.
21. Bujang N., Rodhi M.N.M., Musa M. et al. // Procedia Engineering. 2013. V. 68. P. 372—378.
22. Яценкова О.В., Пен Р.З., Чудина А.И., Скрипников А.М., Кузнецов Б.Н. // Химическая технология. 2015. № 11. С. 686—693.
23. Shin S-J, Park J-M, Cho DH, Kim YH, Cho N-S. // J. Korean Wood Sci Technol, 2009. V. 37. P. 578—584.
24. Iranmahboob J, Nadim F, Monemi S. // Biomass Bioenergy. 2002. V. 22. N 5. P. 401—404.
25. Yoon S.-Y., Han S.-H., Shin S.-J. // Energy. 2014. V. 77. P. 19—24.
26. Яценкова О.В., Пен Р.З., Скрипников А.М., Береговцова Н.Г., Кузнецов Б.Н. // Химия в интересах устойчи-вого развития. 2016. Т. 24. С. 811—819. [Yatsenkova O.V., Pen R.Z., Skripnikov A.M., Beregovtsova N.G., Kuznetsov B.N. // Chemistry for Sustainable Development. 2016. V. 24. P. 811— 819].
27. Jeffries T. // Curr. Opin. Biotech. 2006. V. 17. N 3. P. 320—326.
28. Wijaya Y., Putra R., Wijaya V., Ha J.-M., Suh D., Kim Ch. // Bioresource technology. 2014. V. 164. P. 221—231.
29. Sluiter J.B., Ruiz R.O., Scarlata CH.J., Sluiter A.D., Templeton D.W. // J. Agric. Food Chem. 2010. V. 58. P. 9043— 9053.
30. Hallac B.B., Ragauskas A.J. // Biofuels Bioprod Bioref. 2011. V. 5. Р. 215—225.
31. Ruiz-Matute A.I., Hernandez-Hernandez O., Rodriguez-Sanchez S., Sanz M.L., Martinez-Castro I. // J. Chromatogr. B. 2011. V. 879. P. 1226—1240.
32. Wang H., Zhang C., He H., Wang L. // J. Environmental Sci. 2012. V. 24. N 3. Р. 473—478.
33. Барам Г.И. В книге: 100 лет хроматографии / Отв. ред. Руденко Б.А. 2003. М.: Наука. С. 32—45. [Baram G.I. In book: 100 years of chromatography. Moscow: Nauka. P. 32—45.
34. Харина М.В., Емельянов В.М., Аблаев А.Р., Мошкина Н.Е., Ибрагимова Н.Н., Горшкова Т.А. // Химия растительного сырья. 2014. № 1. С. 53—59.
35. Klinke H.B., Thomsen A.B., Ahring B.K. // Appl. Microbiol. Biotechnol. 2004. Vol. 66. P. 10—26.
36. Гарынцева Н.В., Судакова И.Г., Кузнецов Б.Н. // Журнал Сибирского федерального университета. Химия. 2015. Т. 8. № 3. С. 422—429. [Garyntseva N.V., Sudakova I.G., KuznetsovKuznetsovB.N. // Journal of Siberian Federal University. Chemistry. 2015. V. 8. N. 3. P. 422—429].
37. Hilgert J., Meine N., Rinaldi R., Schüth F. // Energy & Environmental Science. 2013. V. 6. P. 92—96.
38. Hu Hua-yu, Chen Yan-meng, Zhang Yan-juan // J. Chem. Pharm. Res. 2013. V. 5. N 12. P.129—134.
39. Carrasquillo-Flores R., Käldström M., Schüth F. // ACS Catalysis. 2013. V. 3. P. 993—997.
40. Яценкова О.В., Чудина А.И., Скрипников А.М., Чесноков Н.В., Кузнецов Б.Н. // Журнал СФУ. Химия. 2015. T. 8. № 2. C. 211—221. [Yatsenkova O.V., Chudina A.I., Skripnikov A.M., Chesnokov N.V., Kuznetsov B.N. // Journal of Siberian Federal University. Chemistry. 2015. V. 8. N. 2. P. 211—221].
41. Kim J.S., Lee Y.Y., Kim T.H. // Bioresource Technology. 2016. V. 199. Р. 42—48.
42. Knill Ch.J., Kennedy J.F. // Carbohydrate Polymers. 2003. V. 51. N 3. P. 281—300.
43. Chen R., Wang Y.-Zh., Liao Q., Zhu X., Xu T.-F. // BMB Reports. 2013. V. 46. N 5. P. 244—251.
44. Mills T.Y., Sandoval N.R., Gill R.T. // Biotechnology for Biofuels. 2009. V. 2. P.26—36.
45. Huang H., Guo X., Li D., Liu M., Wu J., Ren H. // Bioresource Technology. 2011. V. 102. P. 7486—7493.
46. Zha Y., Westerhuis J.A., Muilwijk B., Overkamp K.M., Nijmeijer B.M., Coulier L., Smilde A. K., Punt P.J. // BMC Biotechnology. 2014. V. 14. P. 22—38.
47. Zha Y., Muilwijk B., Coulier L., Punt P.J. // J. Bioprocessing & Biotechniques. 2012. V. 2. N 1. P.112—122.
Review
For citations:
Kuznetsov B.N., Chesnokov N.V., Yatsenkova O.V., Sudakova I.G., Skripnikov A.M., Beregovtsova N.G., Sharypov V.I. Development of Methods for Synthesis of Quality Hydrolyzates Based on the Integration of Catalytic Processes of Peroxide Delignification and Acid Hydrolysis of Birchwood. Kataliz v promyshlennosti. 2017;17(6):543-553. (In Russ.) https://doi.org/10.18412/1816-0387-2017-6-543-553