Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

What is the Effect of Promoter Loading on Alkalized Bimetallic Co-Mo Catalyst for Higher Alcohols Synthesis from Syngas?

https://doi.org/10.18412/1816-0387-2019-2-86-94

Abstract

Manganese and nickel co-modified K/Co/MoS2 catalysts supported on graphene were prepared by incipient wetness impregnation method for application in higher alcohol synthesis (HAS). All catalysts were characterized by X-ray diffraction (XRD), nitrogen adsorptiondesorption, temperature-programmed reduction (TPR) and transmission electron microscopy (TEM). The effect of promoters, as well as supports on higher alcohol synthesis production from syngas, was investigated in a fixed bed reactor. The process was performed with an molar ratio H2 : CO = 1 : 1, operating pressure and temperature of 4 MPa and 330 °C, respectively, and gas hourly space velocity (GHSV) 3.84 m3 (STP)/(kgcat.·h) as reaction conditions (STP – standard temperature and pressure). Results originated from practical works showed that the addition of Ni to the graphene-based catalyst increased HAS production and decreased methanol formation. The total alcohols space-time yield (STY) and alcohol selectivity on Ni/Mn/Co/Mo/K/graphene catalyst reached a maximum at 0.41 galc./(gcat.·h) and 63.51 %, respectively, which is higher than the same composition over alumina supported catalyst.

About the Authors

R. G. Moqadam
School of Chemistry, College of Science, University of Tehran
Islamic Republic of Iran


A. Tavasoli
School of Chemistry, College of Science, University of Tehran
Islamic Republic of Iran


M. Salimi
School of Chemistry, College of Science, University of Tehran
Islamic Republic of Iran


References

1. Boahene P.E., Dalai A.K. // Ind. Eng. Chem. Res. 2017. Vol. 56, № 46. P. 13552—13565.

2. Calverley E.M., Anderson R.B. // J. Catal. 1987. Vol. 104, № 2. P. 434—440.

3. Luk H.T., Mondelli C., Ferré D.C., Stewart J.A, Pérez-Ramírez J. // J. Chem. Soc. Rev. 2017. Vol. 46, № 5. P. 1358—1426.

4. Hasty J.K., Ponnurangam S., Turn S., Somasundaran P., Kim T., Mahajan D. // Fuel. 2016. Vol. 164. P. 339—346.

5. Kiai R.M., Tavasoli A., Karimi A. // React. Kinet. Mech. Catal. 2016. Vol. 117, № 1. P. 173—188.

6. Surisetty V.R., Dalai A.K., Kozinski J. // Appl. Catal. A: Gen. 2010. Vol. 385, № 1-2. P. 153—162.

7. Li H., Zhang W., Wang Y., Shui M., Sun S., Bao J., Gao C. // J. Energy Chem. 2019. Vol. 30. P. 57—62.

8. Qi H., Li D., Yang C., Ma Y., Li W., Sun Y., Zhong B. // Catal. Commun. 2003. Vol. 4, № 7. P. 339—342.

9. Fujimoto K., Oba T. // Appl. Catal. 1985. Vol. 13, № 2. P. 289—293.

10. Li D., Yang C., Zhao N., Qi H., Li W., Sun Y., Zhong B. // Fuel Process. Technol. 2007. Vol. 88, № 2. P. 125—127.

11. Gholipour-Ranjbar H., Ganjali M.R., Norouzi P., Naderi H.R. // Mater. Res. Express. 2016. Vol. 3, № 7. P. 075501.

12. Salimi M., Tavasoli A., Balou S., Hashemi H., Kohansal K. // Appl. Catal. B: Environ. 2018. Vol. 239. P. 383—397.

13. Julkapli N.M., Bagheri S. // Int. J. Hydrogen Energy. 2015. Vol. 40, № 2. P. 948—979.

14. Abdolhosseinzadeh S., Asgharzadeh H., Kim H.S. // Sci. Rep. 2015. Vol. 5. Article number 10160.

15. Zhao C., Chou S.-L., Wang Y., Zhou C., Liu H.-K., Dou S.-X. // RSC Adv. 2013. Vol. 3, № 37. P. 16597—16603.

16. Morrill M.R., Thao N.T., Shou H., Davis R.J., Barton D.G., Ferrari D., Agrawal P.K., Jones C.W. // ACS Catal. 2013. Vol. 3, № 7. P. 1665—1675.

17. Li D., Yang C., Qi H., Zhang H., Li W., Sun Y., Zhong B. // Catal. Commun. 2004. Vol. 5, № 10. P. 605—609.

18. Surisetty V.R., Hu Y., Dalai A.K., Kozinski J. // Appl. Catal. A: Gen. 2011. Vol. 392, № 1-2. P. 166—172.

19. Fu Y., Fujimoto K., Lin P., Omata K., Yu Y. // Appl. Catal. A: Gen. 1995. Vol. 126, № 2. P. 273—285.

20. Iranmahboob J., Toghiani H., Hill D.O. // Appl. Catal. A: Gen. 2003. Vol. 247, № 2. P. 207—218.

21. Surisetty V.R., Eswaramoorthi I., Dalai A.K. // Fuel. 2012. Vol. 96. P. 77—84.


Review

For citations:


Moqadam R.G., Tavasoli A., Salimi M. What is the Effect of Promoter Loading on Alkalized Bimetallic Co-Mo Catalyst for Higher Alcohols Synthesis from Syngas? Kataliz v promyshlennosti. 2019;19(2):86-94. https://doi.org/10.18412/1816-0387-2019-2-86-94

Views: 623


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)