Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Ni/MgO catalysts on structured metal supports for air conversion of lower alkanes to synthesis gas

https://doi.org/10.18412/1816-0387-2019-5-351-363

Abstract

A series of thermostable heat-conducting selective catalysts for air conversion of lower alkanes to burn-initiating fuel additives fed as synthesis gas to fuel were developed based on nickel-containing highly porous foam-cellulous material (HPCM) and a net-shaped support. The catalyst synthesis included stages of preparation of the support based on Ni-HPCM (Ni 99,95 %, PPI = 40) or fechral grid, arrangement of the support surface and formation of structured units, thermal treatment of the samples, supporting of the active component via repeated impregnation with a combination of magnesium and nickel acetates, and stepwise thermal treatment. Thus prepared catalysts NiO-MgO/(HPCM or fechral) were tested in the reactions of air conversion of propane, propane-butane, natural gas, as well as tri-reforming. In all the 80–100 hour experiments, the catalysts provided 90–96 % conversion at the flow rate of 32000–71000 h–1, no coke formation being observed at the air excess coefficient of 0.31–0.43. A two-phase two-temperature mathematical model of the air conversion of liquefied hydrocarbon gases (LHG) was developed for the numerical analysis of the results obtained; the modeled results agreed well with the experimental data on temperatures of the catalyst and flow, as well as on the composition of the outlet gas mixture. A generator of 100 kW heat power for the air conversion of LHG was calculated as a practical example.

About the Authors

V. A. Kirillov
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


A. B. Shigarov
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


N. A. Kuzin
LLC UNICAT, Novosibirsk
Russian Federation


V. V. Kireenkov
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


A. S. Braiko
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


N. V. Burtsev
LLC Gazomotor-R, Rybinsk
Russian Federation


References

1. Кириллов В.А., Кузин Н.А., Киреенков В.В., Амосов Ю.И., Бурцев В.А., Емельянов В.К., Собянин В.А., Пармон В.Н. // Теор. основы хим. технологии. 2011. Т. 45. № 2. С. 139—154. DOI: 10.1134/s0040579511020096.

2. Livio D, Donazzi A., Beretta A., Groppi G., Forzatti P. // I&EC Res. 2012. V. 51. P. 7573-7583. DOI: 10.1021/ie202098q.

3. Donazzi A., Livio D., Diehm C., Beretta A., Groppi G., Forzatti P. // Appl. Cat. A. 2014. V. 469. P. 52-64. DOI: 10.1016/j.apcata.2013.09.054

4. Pagani D., Livio D., Donazzi A., Beretta A., Groppi G., Maestri M., Tronconti E. // Cat. Today. 2012. V. 197. P. 265-280. DOI: 10.1016/j.cattod.2012.09.004

5. Rufino M., Verde N., Alvares-Galvan M. et аl. // ChemCatChem. 2011. V. 3. P. 440-457. DOI: 10.1002/cctc.201000315

6. Karakaya C., Karadeniz H., Maier L., Deutschmann O. // ChemCatChem. 2017. V. 9. P. 685-695. DOI: 10.1002/cctc.201601237

7. Peymani M., Alavi S., Rezaei M. // Int. J. Hydr. Energy. 2016. V. 41. P. 19057-19069. DOI: 10.1016/j.ijhydene.2016.07.072

8. Mosayebi A., Abedini R. // J. Ind. Eng. Chem. 2014. V. 20. P. 1542-1546. DOI: 10.1016/j.jiec.2013.07.044

9. Malaibari Z., Amin A., Croiset E., Epling W. // Int. J. Hydr. Energy. 2014. V. 39. P. 10061-10073 DOI: 10.1016/j.ijhydene. 2014.03.169

10. Усачев Н.Я., Харитонов В.В., Беланова Е.П., Старостина Т.С., Круковский И.М. // Ж. Рос. хим. об-ва им. Д.И. Менделеева. 2008. Т. LII, № 4. С. 22—31.

11. Rostrup-Nielsen J.R. Catalysis steam reforming / Catalysis Sciences and Technology, by ed. Andersen JR, Boudart M. — Springer. Berlin, 1984. Vol. 5. Chap. 1. P. 1-117. DOI: 10.1007/978-3-642-93247-2_1

12. Синев М.Ю., Корчак В.Н., Крылов О.В. // Успехи химии. 1989. Т. 58. Вып. 1. С. 38—57.

13. Campbell K.D., Lunsford J.H. // J. Phys. Chem. 1988. V. 92. P. 5792-5796.

14. Mims C.A., Hall R.B., Rose K.D., Myers G.R. // Catal. Lett. 1989. V. 2. P. 361-368. DOI: 10.1007/BF00768178

15. Арутюнов В.С. Окислительная конверсия природного газа. М.: КРАСАНД. 2011. 640 c.

16. ЗАО «ЭКАТ» г. Пермь. http://ekokataliz.ru/penomaterialyi/

17. Muley А., Kiser С., Sunden B., Shah R.F. // Heat Transfer Eng. 2012. V. 33. No. 1. P. 42-51. DOI: 10.1080/01457632.2011.584817

18. Сетка фехралевая. ГОСТ 12766.3—90.

19. Самойлов А.В., Кириллов В.А., Шигаров А.Б., Брайко А.С., Потемкин Д.И., Шойнхорова Т.Б., Снытников П.В., Усков С.И., Печенкин А.А., Беляев В.Д., Собянин В.А. // Катализ в промышленности. 2018. Т. 18. № 3. C. 41—47. DOI: 10.18412/1816-0387-2018-3-41-47

20. Шигаров А.Б., Кириллов В.А., Кузин Н.А., Киреенков В.В., Брайко А.С. // Теор. основы хим. технологии. 2018. Т. 52. № 3. С. 189—199. DOI: 10.7868/S0040357118020070

21. Шигаров А.Б., Кириллов В.А., Кузин Н.А., Киреенков В.В., Брайко А.С. // Теор. основы хим. технологии. 2018. Т. 52. № 3. С. 294—305. DOI: 10.7868/S0040357118030065

22. Brayko A.S., Shigarov A.B., Kirillov V.A., Kireenkov V.V., Kuzin N.A., Sobyanin V.A., Snytnikov P.V., Kharton V.V. // Material Lett. 2019. V. 236. P. 264-266. DOI: 10.1016/j.matlet.2018.09.175.

23. Жоров Ю.М. Термодинамика химических процессов. Нефтехимический синтез, переработка нефти, угля и природного газа. М.: Химия, 1985. 464 с.

24. Jiang H., Li H., Xu H., Zhang Y. // J. Fuel Chem. Technol. 2007. V. 35(1). P. 72-78. DOI: 10.1016/S1872-5813(07)60012-7

25. Кириллов В.А., Шигаров А.Б., Кузин Н.А., Киреенков В.В., Амосов Ю.И., Самойлов А.В., Бурцев В.А. // Теор. Основы хим. технологии. 2013. Т. 47. № 5. С. 503—517. DOI: 10.7868/S0040357113050059

26. Rostrup-Nielsen J.R. // J. Catal. 1973. V. 31. P. 173-199.

27. Справочник азотчика. Т. 1. / Мельников Е.Ю. (ред.) М.: Химия, 1986. 512 с.

28. Groppi G., Giani L., Tronconi E. // Ind. Eng. Chem. Res. 2007. V. 46. Р. 3955-3958. DOI: 10.1021/ie061330g

29. Рид Р., Праусниц Дж., Шервуд Т. Свойства газов и жидкостей: Справочное пособие. Л.: Химия, 1982. 592 с.


Review

For citations:


Kirillov V.A., Shigarov A.B., Kuzin N.A., Kireenkov V.V., Braiko A.S., Burtsev N.V. Ni/MgO catalysts on structured metal supports for air conversion of lower alkanes to synthesis gas. Kataliz v promyshlennosti. 2019;19(5):351-363. (In Russ.) https://doi.org/10.18412/1816-0387-2019-5-351-363

Views: 1775


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)