

Ni/MgO catalysts on structured metal supports for air conversion of lower alkanes to synthesis gas
https://doi.org/10.18412/1816-0387-2019-5-351-363
Abstract
A series of thermostable heat-conducting selective catalysts for air conversion of lower alkanes to burn-initiating fuel additives fed as synthesis gas to fuel were developed based on nickel-containing highly porous foam-cellulous material (HPCM) and a net-shaped support. The catalyst synthesis included stages of preparation of the support based on Ni-HPCM (Ni 99,95 %, PPI = 40) or fechral grid, arrangement of the support surface and formation of structured units, thermal treatment of the samples, supporting of the active component via repeated impregnation with a combination of magnesium and nickel acetates, and stepwise thermal treatment. Thus prepared catalysts NiO-MgO/(HPCM or fechral) were tested in the reactions of air conversion of propane, propane-butane, natural gas, as well as tri-reforming. In all the 80–100 hour experiments, the catalysts provided 90–96 % conversion at the flow rate of 32000–71000 h–1, no coke formation being observed at the air excess coefficient of 0.31–0.43. A two-phase two-temperature mathematical model of the air conversion of liquefied hydrocarbon gases (LHG) was developed for the numerical analysis of the results obtained; the modeled results agreed well with the experimental data on temperatures of the catalyst and flow, as well as on the composition of the outlet gas mixture. A generator of 100 kW heat power for the air conversion of LHG was calculated as a practical example.
About the Authors
V. A. KirillovRussian Federation
A. B. Shigarov
Russian Federation
N. A. Kuzin
Russian Federation
V. V. Kireenkov
Russian Federation
A. S. Braiko
Russian Federation
N. V. Burtsev
Russian Federation
References
1. Кириллов В.А., Кузин Н.А., Киреенков В.В., Амосов Ю.И., Бурцев В.А., Емельянов В.К., Собянин В.А., Пармон В.Н. // Теор. основы хим. технологии. 2011. Т. 45. № 2. С. 139—154. DOI: 10.1134/s0040579511020096.
2. Livio D, Donazzi A., Beretta A., Groppi G., Forzatti P. // I&EC Res. 2012. V. 51. P. 7573-7583. DOI: 10.1021/ie202098q.
3. Donazzi A., Livio D., Diehm C., Beretta A., Groppi G., Forzatti P. // Appl. Cat. A. 2014. V. 469. P. 52-64. DOI: 10.1016/j.apcata.2013.09.054
4. Pagani D., Livio D., Donazzi A., Beretta A., Groppi G., Maestri M., Tronconti E. // Cat. Today. 2012. V. 197. P. 265-280. DOI: 10.1016/j.cattod.2012.09.004
5. Rufino M., Verde N., Alvares-Galvan M. et аl. // ChemCatChem. 2011. V. 3. P. 440-457. DOI: 10.1002/cctc.201000315
6. Karakaya C., Karadeniz H., Maier L., Deutschmann O. // ChemCatChem. 2017. V. 9. P. 685-695. DOI: 10.1002/cctc.201601237
7. Peymani M., Alavi S., Rezaei M. // Int. J. Hydr. Energy. 2016. V. 41. P. 19057-19069. DOI: 10.1016/j.ijhydene.2016.07.072
8. Mosayebi A., Abedini R. // J. Ind. Eng. Chem. 2014. V. 20. P. 1542-1546. DOI: 10.1016/j.jiec.2013.07.044
9. Malaibari Z., Amin A., Croiset E., Epling W. // Int. J. Hydr. Energy. 2014. V. 39. P. 10061-10073 DOI: 10.1016/j.ijhydene. 2014.03.169
10. Усачев Н.Я., Харитонов В.В., Беланова Е.П., Старостина Т.С., Круковский И.М. // Ж. Рос. хим. об-ва им. Д.И. Менделеева. 2008. Т. LII, № 4. С. 22—31.
11. Rostrup-Nielsen J.R. Catalysis steam reforming / Catalysis Sciences and Technology, by ed. Andersen JR, Boudart M. — Springer. Berlin, 1984. Vol. 5. Chap. 1. P. 1-117. DOI: 10.1007/978-3-642-93247-2_1
12. Синев М.Ю., Корчак В.Н., Крылов О.В. // Успехи химии. 1989. Т. 58. Вып. 1. С. 38—57.
13. Campbell K.D., Lunsford J.H. // J. Phys. Chem. 1988. V. 92. P. 5792-5796.
14. Mims C.A., Hall R.B., Rose K.D., Myers G.R. // Catal. Lett. 1989. V. 2. P. 361-368. DOI: 10.1007/BF00768178
15. Арутюнов В.С. Окислительная конверсия природного газа. М.: КРАСАНД. 2011. 640 c.
16. ЗАО «ЭКАТ» г. Пермь. http://ekokataliz.ru/penomaterialyi/
17. Muley А., Kiser С., Sunden B., Shah R.F. // Heat Transfer Eng. 2012. V. 33. No. 1. P. 42-51. DOI: 10.1080/01457632.2011.584817
18. Сетка фехралевая. ГОСТ 12766.3—90.
19. Самойлов А.В., Кириллов В.А., Шигаров А.Б., Брайко А.С., Потемкин Д.И., Шойнхорова Т.Б., Снытников П.В., Усков С.И., Печенкин А.А., Беляев В.Д., Собянин В.А. // Катализ в промышленности. 2018. Т. 18. № 3. C. 41—47. DOI: 10.18412/1816-0387-2018-3-41-47
20. Шигаров А.Б., Кириллов В.А., Кузин Н.А., Киреенков В.В., Брайко А.С. // Теор. основы хим. технологии. 2018. Т. 52. № 3. С. 189—199. DOI: 10.7868/S0040357118020070
21. Шигаров А.Б., Кириллов В.А., Кузин Н.А., Киреенков В.В., Брайко А.С. // Теор. основы хим. технологии. 2018. Т. 52. № 3. С. 294—305. DOI: 10.7868/S0040357118030065
22. Brayko A.S., Shigarov A.B., Kirillov V.A., Kireenkov V.V., Kuzin N.A., Sobyanin V.A., Snytnikov P.V., Kharton V.V. // Material Lett. 2019. V. 236. P. 264-266. DOI: 10.1016/j.matlet.2018.09.175.
23. Жоров Ю.М. Термодинамика химических процессов. Нефтехимический синтез, переработка нефти, угля и природного газа. М.: Химия, 1985. 464 с.
24. Jiang H., Li H., Xu H., Zhang Y. // J. Fuel Chem. Technol. 2007. V. 35(1). P. 72-78. DOI: 10.1016/S1872-5813(07)60012-7
25. Кириллов В.А., Шигаров А.Б., Кузин Н.А., Киреенков В.В., Амосов Ю.И., Самойлов А.В., Бурцев В.А. // Теор. Основы хим. технологии. 2013. Т. 47. № 5. С. 503—517. DOI: 10.7868/S0040357113050059
26. Rostrup-Nielsen J.R. // J. Catal. 1973. V. 31. P. 173-199.
27. Справочник азотчика. Т. 1. / Мельников Е.Ю. (ред.) М.: Химия, 1986. 512 с.
28. Groppi G., Giani L., Tronconi E. // Ind. Eng. Chem. Res. 2007. V. 46. Р. 3955-3958. DOI: 10.1021/ie061330g
29. Рид Р., Праусниц Дж., Шервуд Т. Свойства газов и жидкостей: Справочное пособие. Л.: Химия, 1982. 592 с.
Review
For citations:
Kirillov V.A., Shigarov A.B., Kuzin N.A., Kireenkov V.V., Braiko A.S., Burtsev N.V. Ni/MgO catalysts on structured metal supports for air conversion of lower alkanes to synthesis gas. Kataliz v promyshlennosti. 2019;19(5):351-363. (In Russ.) https://doi.org/10.18412/1816-0387-2019-5-351-363