Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Self-propagating high-temperature synthesis of composite materials containing tungsten carbides: The effect of phase composition on the yield of ethylene glycol and propylene glycol in the single-step hydrolysis-hydrogenolysis of cellulose

https://doi.org/10.18412/1816-0387-2020-2-140-150

Abstract

It was shown that the hydrolysis-hydrogenolysis of cellulose to alcohols can be catalyzed by a two-component system Ca(OH)2 – composite material containing tungsten carbides (W2C/WC), which are obtained by a combination of mechanochemical activation and self-propagating high-temperature synthesis (SHS) using an exothermic mixture of tungsten oxide, metallic magnesium and carbon black. The introduction of inert additives (metallic tungsten or calcium carbonate) in the exothermic mixture allowed controlling the amount and ratio of tungsten carbides (W2C, WC). The introduction order of reagents in the exothermic mixture and their activation affected the textural properties of materials. Advantages of the SHS method over mechanical activation were demonstrated. The catalytic properties of these materials were studied in the hydrolysis- hydrogenolysis of cellulose. Phase composition of the composite materials was found to affect the yield of ethylene glycol (EG) and 1,2-propylene glycol (1,2-PG) and their ratio. The maximum total yield of EG and 1,2-PG (25–31 %) was obtained in the presence of a sample with high W2C content.

About the Authors

N. V. Gromov
Boreskov Institute of Catalysis SB RAS, Novosibirsk; Novosibirsk State Technical University
Russian Federation


A. A. Zhdanok
nstitute of Solid State Chemistry and Mechanochemistry SB RAS, Novosibirsk
Russian Federation


T. B. Medvedeva
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


I. A. Lukoyanov
Boreskov Institute of Catalysis SB RAS, Novosibirsk; Novosibirsk State Technical University
Russian Federation


V. A. Poluboyarov
Novosibirsk State Technical University; nstitute of Solid State Chemistry and Mechanochemistry SB RAS, Novosibirsk
Russian Federation


O. P. Taran
Boreskov Institute of Catalysis SB RAS, Novosibirsk; Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk
Russian Federation


V. N. Parmon
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


M. N. Timofeeva
Boreskov Institute of Catalysis SB RAS, Novosibirsk; Novosibirsk State Technical University
Russian Federation


References

1. Pang J., Zheng M., Sun R., Wang A., Wang X., Zhang T. // Green Chem. 2016. V. 18. P. 342-359. https://doi.org/10.1039/C5GC01771H

2. Zheng M.Y., Wang A.Q., Ji N., Pang J.F., Wang X.D., Zhang T. // ChemSusChem 2010. V. 3. P. 63-66. https://doi.org/10.1002/cssc.200900197

3. Zhang Y., Wang A., Zhang T. // Chem. Commun. 2010. V. 46. P. 862-864. DOI: 10.1039/b919182h.

4. Li N., Zheng Y., Wei L., Teng H., Zhou J. // Green Chem. 2017. V. 19. P. 682-691. DOI: 10.1039/c6gc01327a.

5. Hamdy M.S., Eissa M.A., Keshk S.M.A.S. // Green Chem. 2017. V. 19. P. 5144-5151. https://doi.org/10.1039/C7GC02122D

6. Liu Y., Luo C., Liu H. // Angew. Chem. Int. Ed. 2012. V. 51. P. 3249-3253. https://doi.org/10.1002/anie.201200351

7. Li Y., Liao Y., Cao X., Wang T., Ma L., Long J., Liu Q., Xua Y. // Biomass and Bioenergy. 2015. V. 74. P. 148-161. https://doi.org/10.1016/j.biombioe.2014.12.025

8. Manaenkov O.V., Kislitsa O.V., Matveeva V.G., Sulman E.M., Sulman M.G., Bronstein L.M. // Frontiers in Chemistry. 2019. V. 7. N 834. https://doi.org/10.3389/fchem.2019.00834

9. Ji N., Zheng M., Wang, A., Zhang T., Chen J.G. // ChemSus- Chem 2012. V. 5. P. 939-944. https://doi.org/10.1002/cssc.201100575

10. Ji N., Zhang T. Zheng M. Y., Wang A.Q., Wang H., Wang X.P., Chen J.G. // Angew Chem Int Ed. 2008. Vol. 47. P. 8510-8513. https://doi.org/10.1002/anie.200803233

11. Ji N., Zhang T., Zheng M.Y., Wang A.Q., Wang H., Wang X.D., Shu Y.Y., Stottlemyer A.L. // Catal. Today. 2009. V. 147. P. 77-85. https://doi.org/10.1016/j.cattod.2009.03.012

12. Ooms R., Dusselier M., Geboers J.A., de Beeck B.O., Verhaeven R., Gobechiya E., Martens, J.A., Redl A., Sels B.F. // Green Chem. 2014. Vol. 16. P. 695-707. https://doi.org/10.1039/C3GC41431K

13. Громов Н.В., Жданок А.А., Медведева Т.Б., Лукоянов И.А., Полубояров В.А., Таран О.П., Пармон В.Н., Тимофеева М.Н. // Журнал Сибирского федерального университета. Серия: Химия. 2019. Т. 12. № 2. С. 269—281. DOI:10.17516/1998-2836-0125.

14. Gromov N.V., Taran O.P., Semeykina V.S., Danilova I.G., Pestunov A.V., Parkhomchuk E.V., Parmon V.N. // Catal. Lett. 2017. V. 147. N 6. P. 1485-1495. https://doi.org/10.1007/s10562-017-2056-y

15. Won H.I., Nersisyan H.H., Won C.W. // J. Mater. Res. 2008. V. 23. P. 2393-2397. DOI: https://doi.org/10.1557/jmr.2008.0289

16. Jia Y., Liu H. // Catal. Sci. Technol. 2016 V. 6. P. 7042—7052. DOI: 10.1039/c6cy00928j

17. Sun J., Liu H. // Catal Tuday. 2014. V. 234. P. 75-82. https://doi.org/10.1016/j.cattod.2013.12.040.

18. Zhou L., Wang A., Li, C., Zheng M., Zhang T. // ChemSusChem. 2012. V. 5. P. 932-938. https://doi.org/10.1002/cssc.201100545


Review

For citations:


Gromov N.V., Zhdanok A.A., Medvedeva T.B., Lukoyanov I.A., Poluboyarov V.A., Taran O.P., Parmon V.N., Timofeeva M.N. Self-propagating high-temperature synthesis of composite materials containing tungsten carbides: The effect of phase composition on the yield of ethylene glycol and propylene glycol in the single-step hydrolysis-hydrogenolysis of cellulose. Kataliz v promyshlennosti. 2020;20(2):140-150. (In Russ.) https://doi.org/10.18412/1816-0387-2020-2-140-150

Views: 527


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)