Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

The production of bioethanol from oat hulls by enzyme-substrate replenishment

https://doi.org/10.18412/1816-0387-2020-2-151-155

Abstract

A promising way for oat hulls utilization is their bioconversion to industrial bioethanol. To improve economic efficiency of the process, it is necessary to increase the concentration of bioethanol in the wash. Here, bioethanol was produced using a combination of enzymatic hydrolysis and alcoholic fermentation, i.e. a combination of biocatalytic steps; in addition, a delayed introduction of inoculum was used. The aim of the work was a comparative study of the indicated processes at the initial concentration of substrate 60 g/l (single loading of the substrate) and upon its increase to 120 g/l by enzyme-substrate replenishment (loading of the substrate in the concentration 60 g/l at the beginning of the process, and replenishment after 4 and 8 h with 30 g/l of the substrate). The substrate was represented by oat hulls treated with 4 wt.% nitric acid on a pilot production plant; enzymatic hydrolysis was carried out using a multienzyme composition of commercial enzyme preparations Cellolux-A and Ultraflo Core; alcoholic fermentation was performed with the yeast Saccharomyces сerevisiae Y-1693 (Russian Collection of Industrial Microorganisms); equipment – a fermenter of volume 11 l. A twofold increase in the substrate concentration via the replenishment led to an increase in bioethanol concentration by a factor of 1.7 (from 2.4 to 4.0 vol.%) but decreased its yield by 11.4 %. The replenishment modes providing an increased concentration of bioethanol in the wash without a decrease in its yield are under development.

About the Authors

G. F. Mironova
Institute for Problems of Chemical and Energetic Technologies SB RAS, Biysk
Russian Federation


E. A. Skiba
Institute for Problems of Chemical and Energetic Technologies SB RAS, Biysk
Russian Federation


References

1. United States Department of Agriculture, Foreign Agricultural Service, Office of Global Analysis. World Agricultural Production (Circular Series WAP 11-19). URL: https://apps.fas.usda.

2. gov/psdonline/circulars/production.pdf. Accessed November 2019.

3. Webster F.H., Wood P.J. American Association of Cereal Chemists // Oats: Chemistry and technology. St. Paul, Minn: AACC International, 2011.

4. Феллер Е.Ю., Копылова О.И., Авдеева Д.А., Ефанов М.В., Беушев А.А., Коньшин В.В. // Ползуновский вестник. 2019. № 1. С. 128—131.

5. Свергузова С.В., Шайхиев И.Г., Гречина А.С., Шайхиева К.И. // Экономика строительства и природопользования. 2018. № 2 (67). С. 51—60.

6. Huang Q., Niu C.H., Dalai A.K. // Chem. Eng. J. 2019. V. 356. P. 830-838. doi: 10.1016/j.cej.2018.09.067.

7. Abedi A., Dalai A.K. // Fuel. 2019. V. 254. doi: 10.1016/j. fuel.2019.05.168.

8. Sakovich G.V., Mikhailov Yu.M., Budaeva V.V., Korchagina A.A., Gismatulina Yu.A., Kozyrev N.V. // Doklady Chemistry. 2018. V. 483. № 1. doi: 10.1134/S0012500818110101.

9. De Oliveira J.P., Bruni G.P., el Halal S.L.M., Bertoldi F.C., Dias A.R.G., da Rosa Zavareze E. // Int. J. Biol. Macromol. 2018. V. 124. P. 175-184. doi:10.1016/j.ijbiomac.2018.11.205.

10. Schneider D., Wassersleben S., Wei? M., Denecke R., Stark A., Enke D. // Waste Biomass Valorization. 2018. doi: 10.1007/s12649-018-0415-6.

11. Valdebenito F., Garc?a Lovera R. A., Cruces K., Ciudad G., Chinga-Carrasco G., Habibi Y. // ACS Sustain. Chem. Eng. 2018. V. 6. P. 12603-12612. doi: 10.1021/acssuschemeng.8b00771.

12. Kashcheyeva E.I., Gismatulina Yu.A., Budaeva V.V. // Polymers. 2019. V. 11. № 1645. doi:10.3390/polym11101645.

13. Aleshina L.A., Gladysheva E.K., Budaeva V.V., Skiba E.A., Arkharova N.A., Sakovich G.V. // Crystallography Reports. 2018. V. 63. № 6. P. 955-960. doi: 10.1134/S1063774518050024.

14. Chaud L.C.S., Silva D.D.D.V., Mattos R.T.D., Felipe M.D.G.D.A. // Braz. Arch. Biol. Technol. 2012. V. 55. P. 771-777.

15. Lawford H.G., Rousseau J.D., Tolan J.S. // Appl. Biochem. Biotechnol. 2001. V. 91. P. 133-146. doi: 10.1385/ABAB:91-93:1-9:133.

16. Сакович Г.В., Будаева В.В., Скиба Е.А., Макарова Е.И., Павлов И.Н., Кортусов А.Н., Золотухин В.Н. // Ползуновский вестник. 2012. № 4. С. 173—176.

17. Skiba E.A., Budaeva V.V., Baibakova O.V., Zolotukhin V.N., Sakovich G.V. // Biochem. Eng. J. 2017. V. 126. P. 118-125. doi:10.1016/j.bej.2016.09.003.

18. Bychkov A., Podgorbunskikh E., Bychkova E., Lomovsky O. // Biotechnol Bioeng. 2019. V. 116. № 5. P. 1231-1244. doi: 10.1002/bit.26925.

19. Donohoe B.S., Resch M.G. // Curr. Opin. Chem. Biol. 2015. V. 29. P. 100-107. doi: 10.1016/j.cbpa.2015.08.014.

20. Dahman Y., Syed K., Begum S., Roy P., Mohtasebi B. // Biomass, Biopolymer-Based Materials, and Bioenergy. 2019. P. 277-325. doi: 10.1016/b978-0-08-102426-3.00014-x.

21. Paulov? L., Pat?kov? P., Rychtera M., Melzoch K. // Fuel. 2014. V. 122. P. 294-300. doi: 10.1016/j.fuel.2014.01.020.

22. Raj K., Krishnan C. // Ind. Crops and Prod. 2019. V. 131. P. 32-40. doi: 10.1016/j.indcrop.2019.01.032.

23. Unrean P., Khajeeram S., Laoteng K. // Appl. Microbiol. Biotechnol. 2016. V. 100. P. 2459-2470. doi: 10.1007/s00253-015-7173-1.

24. Kurschner K., Hoffer A. // Fresenius J. Anal. Chem. 1993. V. 92. № 3. P. 145-154.

25. Оболенская А.В., Ельницкая З.П., Леонович А.А. Лабораторные работы по химии древесины и целлюлозы. М.: Экология, 1991. 320 с.

26. TAPPI method T222 om-83. Acid-insoluble lignin in wood and pulp. In: Test methods 1998—1999. Atlanta. TAPPI Press, 1999.

27. TAPPI method T211 om-85. Ash in wood, pulp, paper, and paperboard. In: Test methods. Atlanta. TAPPI Press, 1985.

28. Миронова Г.Ф., Скиба Е.А., Кухленко А.А. // Катализ в промышленности. 2019. Т. 19. № 6. С. 482—489. doi: 10.18412/1816-0387-2019-6-482-489.

29. Pavlov I.N. // Catal. Ind. 2014. Vol. 6. № 4. P. 350-360. doi: 10.1134/S207005041404014X.

30. Skiba E.A., Mironova G.F., Kukhlenko A.A., Orlov S.E. // Catal. Ind. 2018. Vol. 10. № 3. P. 257-262. doi: 10.1134/ S207005041803008X.

31. Miller G.L. // Anal. Chem. 1959. V. 31. № 3. P. 426—428. doi: 10.1021/ac60147a030.

32. Dotsenko A., Gusakov A., Rozhkova A., Sinitsyna O., Shashkov I., Sinitsyn A. // 3 Biotech. 2018. V. 8. № 9. P. 1—8. doi:10.1007/s13205-018-1419-4.

33. Яровенко В.Л., Маринченко В.А., Смирнов В.А. и др. Технология спирта. М.: Колос, 2002. 464 с.

34. Hu F., Ragauskas A. // Bioenerg. Res. 2012. V. 5. № 4. P. 1043-1066. doi: 10.1007/s12155-012-9208-0.

35. Yu Z., Jameel H., Chang H., Philips R., Park S. // Biotechnol. Bioeng. 2011. V. 109. № 5. P. 1131-1139. doi: 10.1002/bit.24386.


Review

For citations:


Mironova G.F., Skiba E.A. The production of bioethanol from oat hulls by enzyme-substrate replenishment. Kataliz v promyshlennosti. 2020;20(2):151-155. (In Russ.) https://doi.org/10.18412/1816-0387-2020-2-151-155

Views: 593


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)