

Crystallization of the Granulated Molecular Sieve SAPO-11 Having High Crystallinity and a Hierarchical Pore Structure
https://doi.org/10.18412/1816-0387-2020-3-167-173
Abstract
A method for the synthesis of the granulated molecular sieve SAPO-11 having high crystallinity and a hierarchical pore structure was proposed for the first time. Crystallization is based on the synthesis of granules comprising 70 wt.% of powdered SAPO-11 and 30 wt.% of the silicoaluminophosphate binder, which transforms into SAPO-11 during crystallization and forms a joint system of intergrown silicoaluminophosphate crystals. This crystallization method makes it possible to obtain the granulated SAPO-11 having high crystallinity and phase purity; its specific surface area SBET is 212 m2/g, micro, meso- and macropore volumes are 0.08, 0.11 and 0.55 cm3/g, respectively. Meso- and macropores were shown to form between intergrown SAPO-11 crystals.
About the Authors
M. R. AgliullinRussian Federation
Z. R. Khairullina
Russian Federation
B. I. Kutepov
Russian Federation
References
1. Degnan Jr T.F. // Studies in Surface Science and Catalysis. 2007. V. 170. P. 54—65.
2. Cejka J., Corma A. and Zones S. Zeolites and catalysis: synthesis, reactions and applications, Wiley-VCH, Weinheim, 2010.
3. Pastore H.O., Coluccia S., Marchese L. // Annu. Rev. Mater. Res. 2005. V. 35. P. 351—395.
4. Pat. Appl. U.S. 4440871; опубл. 04.03.1984.
5. Baerlocher C., McCusker L.B., Olson D.H. Atlas of zeolite framework types. Elsevier, 2007.
6. Barthomeuf D. // Zeolites. 1994. V. 14. Р. 394—401.
7. Hartmann M., Elangovan S.P. // Advances in Nanoporous Materials. 2010. V. 1. P. 237—312.
8. Yadav R., Sakthivel A. // Applied Catalysis A: General. 2014. V. 481. P. 143—160.
9. Akhmedov V.M., Al-Khowaiter S.H. // Catalysis Reviews. 2007. V. 49. P. 33—139.
10. Miller S.J. // Microporous Materials. 1994. V. 2. P. 439—449.
11. Miller S.J. // Studies in Surface Science and Catalysis. 1994. V. 84. P. 2319—2326.
12. Deldari H. //Applied Catalysis A: General. 2005. V. 293. P. 1—10.
13. Zhong J. and all. // Catalysis Science & Technology. 2017. V. 7. P. 4905.
14. Ertl G., Knözinger H., Schüth F., Weitkamp J. // Handbook of Heterogeneous Catalysis — 2008, Weinheim: Wiley-VCH.
15. Travkina O.S. and all. // RSC Advances. 2017. V. 7. P. 32581—32590.
16. Travkina O.S. and all. //Journal of Porous Materials. 2019. V. 26. P. 995.
17. Аглиуллин М.Р., Хайруллина З.Р., Куватова Р.З., Кутепов Б.И. // Катализ в промышленности. 2019. T. 6. C. 414—420.
18. Agliullin M.R., Khairullina Z.R., Faizullin A.V. // Catalysis-in-Industry. 2019. V. 11. P. 1.
19. Agliullin M.R., Khairullina Z.R., Faizullin A.V. // Catalysis-in-Industry. 2019. V. 11. P. 87.
20. Gregg J., Sing S.W., Salzberg W. //Journal of The Electrochemical Society. 1967. V. 11. P. 279C.
21. Emeis C.A. // Journal of Catalysis.1993. V. 141. P. 347—354.
22. Yushchenko V.V. // J. Phys. Chem. 1997. V. 71. P. 628.
23. Yang L., Aizhen Y., Qinhua X. // Applied Catalysis. 1991. V. 67. P. 169—177.
Review
For citations:
Agliullin M.R., Khairullina Z.R., Kutepov B.I. Crystallization of the Granulated Molecular Sieve SAPO-11 Having High Crystallinity and a Hierarchical Pore Structure. Kataliz v promyshlennosti. 2020;20(3):167-173. (In Russ.) https://doi.org/10.18412/1816-0387-2020-3-167-173