

Low-temperature Steam Reforming of Natural Gas to Methane-Hydrogen Mixtures
https://doi.org/10.18412/1816-0387-2020-3-184-189
Abstract
Thermodynamic analysis of the steam reforming of natural gas at a temperature of 300–600 °C, pressure 0.1–4 MPa and Н2О : С molar ratio 0.8–1.2 was carried out. Under these conditions, the reaction products are methane-hydrogen mixtures with the hydrogen concentration 10–30 vol.%. Raising the temperature and Н2О : С molar ratio as well as decreasing the pressure make it possible to increase the hydrogen concentration in the reaction products. Thermodynamic boundaries of the process in the absence of catalyst coking were determined. Experiments on the formation of methane-hydrogen mixtures from methane with the outlet hydrogen concentration 15–35 vol.% were performed on a commercial Ni-CrOx-Al2O3 catalyst at a temperature of 325–425 °С, Н2О : С molar ratio 0.8–1.0, and atmospheric pressure. Under the indicated conditions, the process was not accompanied by the formation of carbon on the catalyst.
About the Authors
D. I. PotemkinRussian Federation
S. I. Uskov
Russian Federation
A. M. Gorlova
Russian Federation
V. A. Kirillov
Russian Federation
A. B. Shigarov
Russian Federation
A. S. Brayko
Russian Federation
V. N. Rogozhnikov
Russian Federation
P. V. Snytnikov
Russian Federation
A. A. Pechenkin
Russian Federation
V. D. Belyaev
Russian Federation
A. A. Pimenov
Russian Federation
V. A. Sobyanin
Russian Federation
References
1. Bauer C.G., Forest T.W. // Int. J. Hydrogen Energy. 2001. V. 26. № 1. P. 55—70. doi: 10.1016/S0360-3199(00)00067-7.
2. Swain M.R., Yuzuf M.J., Dülger Z., Swain M.N. // SAE Tech. Pap. 1993. № 412. P. 932775. doi: 10.4271/932775.
3. Cattelan A., Wallace J. // SAE Tech. Pap. 1995. № 412. P. 952497. doi: 10.4271/952497.
4. Cinti G., Bidini G., Hemmes K. // Appl. Energy. 2019. V. 238. P. 69—77. doi: 10.1016/J.APENERGY.2019.01.039.
5. Kwak B.S., Lee J.S., Lee J.S., Choi B.-H., Ji M.J., Kang M. // Appl. Energy. 2011. V. 88. № 12. P. 4366—4375. doi: 10.1016/J.APENERGY.2011.05.017.
6. Li X., Zhu G., Qi S., Huang J., Yang B. // Appl. Energy. 2014. V. 130. P. 846—852. doi: 10.1016/J.APENERGY.2014.01.056.
7. Cavinato C., Bolzonella D., Fatone F., Cecchi F., Pavan P. // Bioresour. Technol. 2011. V. 102. № 18. P. 8605—8611. doi: 10.1016/J.BIORTECH.2011.03084.
8. Liu Z., Zhang C., Lu Y., Wu X., Wang L., Wang L., Han B., Xing X.-H. // Bioresour. Technol. 2013. V. 135. P. 292—303. doi: 10.1016/J.BIORTECH.2012.10.027.
9. Elreedy A., Tawfik A., Kubota K., Shimada Y., Harada H. // Int. Biodeterior. Biodegradation. 2015. V. 105. P. 252—261. doi: 10.1016/J.IBIOD.2015.09.015.
10. Sun C., Xia A., Liao Q., Fu Q., Huang Y., Zhu X. // Renew. Sustain. Energy Rev. 2019. V. 112. P. 395—410. doi: 10.1016/J.RSER.2019.05.061.
11. Lunprom S., Phanduang O., Salakkam A., Liao Q., Imai T., Reungsang A. // Int. J. Hydrogen Energy. 2019. V.44. № 6. P. 3339—3346. doi: 10.1016/j.ijhydene.2018.09.064.
12. Elreedy A., Fujii M., Tawfik A. // Bioresour. Technol. 2017. V. 223. P. 10—19. doi: 10.1016/j.biortech.2016.10.026.
13. Liu Z., Li Q., Zhang C., Wang L., Han B., Li B., Zhang Y., Chen H., Xing X.-H. // Biochem. Eng. J. 2014. V. 90. P. 234—238. doi: 10.1016/j.bej.2014.06.013.
14. https://www.bbc.com/news/science-environment-50873047
15. Аксютин О.Е., Ишков А.Г., Романов К.В., Тетеревлев Р.В., Пыстина Е.А. // Вести газовой науки. 2017. Т. 5. № 33. С. 12—20.
16. Rostrup-Nielsen J., Christiansen L.J. Concepts in Syngas Manufacture. Catalytic Science Series — book 10. Imperial College Press, 2011. 379 p.
17. Берлин М.А., Гореченков В.Г., Капралов В.П. Квалифицированная первичная переработка нефтяных и природных углеводородных газов. Краснодар: Советская Кубань, 2012. 520 с.
18. Snytnikov P.V., Potemkin D.I., Uskov S.I., Kurochkin A.V., Kirillov V.A., Sobyanin V.A. // Catal. Ind. 2018. V. 10. № 3. P. 202—216. doi:10.1134/S207005041803011X.
19. Zyryanova M.M., Snytnikov P.V., Amosov Yu.I., Belyaev V.D., Kireenkov V.V., Kuzin N.A., Vernikovskaya M.V., Kirillov V.A., Sobyanin V.A. // Fuel. 2013. V. 108. P. 282—291. doi: 10.1016/j.fuel.2013.02.047.
20. Uskov S.I., Enikeeva L.V., Potemkin D.I., Belyaev V.D., Snytnikov P.V., Gubaidullin I.M., Kirillov V.A., Sobyanin V.A. // Catal. Ind. 2017. V. 9. № 2. P. 104—109. doi: 10.1134/S2070050417020118.
21. Uskov S.I., Potemkin D.I., Shigarov A.B., Snytnikov P.V., Kirillov V.A., Sobyanin V.A. // Chem. Eng. J. 2019. V. 368. P. 533—540. doi: 10.1016/j.cej.2019.02.189.
22. Голосман Е.З., Ефремов В.Н. // Катализ в промышленности. 2012. Т. 5. С. 36—55.
23. Uskov S.I., Potemkin D.I., Snytnikov P.V., Belyaev V.D., Bulavchenko O.A., Simonov P.A., Sobyanin V.A. // Mater. Lett. 2018. V. 221. P. 18—21. doi: 10.1016/j.matlet.2018.03.010.
Review
For citations:
Potemkin D.I., Uskov S.I., Gorlova A.M., Kirillov V.A., Shigarov A.B., Brayko A.S., Rogozhnikov V.N., Snytnikov P.V., Pechenkin A.A., Belyaev V.D., Pimenov A.A., Sobyanin V.A. Low-temperature Steam Reforming of Natural Gas to Methane-Hydrogen Mixtures. Kataliz v promyshlennosti. 2020;20(3):184-189. (In Russ.) https://doi.org/10.18412/1816-0387-2020-3-184-189