Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Hydrolysis of Cellulose in the Presence of Catalysts Based on Cesium Salts of Heteropolyacids

https://doi.org/10.18412/1816-0387-2020-3-234-242

Abstract

The catalytic properties of cesium salts of heteropolyacids with the composition Cs4-хHхSiW12O40 (х = 3 and 3.5), Cs3-хHхPMo12O40 and Cs3-хHхPW12O40 (х = 2 and 2.5) were studied in the hydrolysis of cellulose to glucose at 180 °C in an argon atmosphere. Glucose was shown to be the main product of the reaction. The maximum yield reached 23% in the presence of Cs3HSiW12O40 for 1 h of the reaction. Specific surface area was supposed to affect the catalyst efficiency. It was found that in the presence of the indicated salts the reaction is heterogeneous and homogeneous, which is caused by leaching of the active component to the solution. The obtained materials were shown to be more efficient in comparison with the systems reported in the literature.

About the Authors

N. V. Gromov
Boreskov Institute of Catalysis SB RAS, Novosibirsk; Novosibirsk State Technical University
Russian Federation


T. B. Medvedeva
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


O. P. Taran
Boreskov Institute of Catalysis SB RAS, Novosibirsk; Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk Scientific Center SB RAS, Krasnoyarsk
Russian Federation


M. N. Timofeeva
Boreskov Institute of Catalysis SB RAS, Novosibirsk; Novosibirsk State Technical University
Russian Federation


V. N. Parmon
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


References

1. Besson M., Gallezot P., Pinel C. // Chemical Reviews. 2014. V. 114. N 3. P. 1827—1870. https://doi.org/10.1021/cr4002269

2. Кузнецов Б.Н. // Соросовский образовательный журнал. 1996. № 12. С. 47—55.

3. Gallezot P. // Chemical Society Reviews. 2012. V. 41. N 4. P. 1538—1558. https://doi.org/10.1039/C1CS15147A

4. Mukherjee A., Dumont M.-J., Raghavan V. // Biomass Bioenergy. 2015. V. 72. P. 143—183. https://doi.org/10.1016/j.biombioe.2014.11.007

5. Bobleter O. Hydrothermal degradation and fractionation of saccharides. Polysaccharides. Structural diversity and functional versatility. Second edition / Ed. Severian Dimitriu. New York: Marcel Dekker, 2005. P. 893—913.

6. Gromov N.V., Taran O.P., Parmon V.N. // Sustainable Catalysis for Biorefineries. Green Chemistry Series. V. 56. / Eds. F. Frusteri, D. Aranda, G. Bonura. Croydon, United Kingdom: RCS. 2018. P. 65-97. https://doi.org/10.1039/9781788013567-00065

7. Izumi Y., Ono M., Kitagawa M., Yoshida M., Urabe K. // Microporous Materials. 1995. V. 5. N. 4. P. 255—262. https://doi.org/10.1016/0927-6513(95)00059-3

8. Hill C.L., Prosser-McCartha C.M. // Coordination Chemistry Reviews. 1995. V. 143. P. 407—455. https://doi.org/10.1016/0010-8545(95)01141-B

9. Tian J., Fang C., Cheng M., Wang X. // Chemical Engineering and Technology. 2011. V. 34. N. 3. P. 482—486. https://doi.org/10.1002/ceat.201000409

10. Ogasawara Y., Itagaki S., Yamaguchi K., Mizuno N. // Chem- SusChem. 2011. V. 4. N. 4. P. 519—525. https://doi.org/10.1002/cssc.201100025

11. Macht J., Janik M.J., Neurock M., Iglesia E. // Angewandte Chemie Int. Ed. 2007. V. 46. P. 7864—7868. https://doi.org/10.1002/anie.200701292

12. Shimizu K.-I., Furukawa H., Kobayashi N., Itaya Y., Satsuma A. // Green Chemistry. 2009. V. 11. N. 10. P. 1627—1632. https://doi.org/10.1039/B913737H

13. Tian, J., Wang, J., Zhao, Sh., Jiang, C., Zhang, X., Wang, X. // Cellulose Journal. 2010. V. 17. P. 587—594. https://doi.org/10.1007/s10570-009-9391-0

14. Okuhara T., Watanabe H., Nishimura T., Inumaru K., Misono M. // Chemistry of Materials. 2000. V. 12. N. 8. P. 2230—2238. https://doi.org/10.1021/cm9907561

15. Gromov N.V., Taran O.P., Semeykina V.S., Danilova I.G., Pestunov A.V., Parkhomchuk E.V., Parmon V.N. // Catalysis Letters. 2017. V. 147. N. 6. P. 1485—1495. https://doi.org/10.1007/s10562-017-2056-y

16. Kozhevnikov I.V. Catalysis by polyoxometalates — Liverpool, United Kingdom: Wiley, 2002. 201 p.

17. Gromov N.V., Medvedeva T.B., Taran O.P., Timofeeva M.N., Said-Aizpuru O., Panchenko V.N., Gerasimov E.U., Kozhevnikov I.V., Parmon V.N. // Applied Catalysis A: Gen. 2020. V. 595. P. 117489. https://doi.org/10.1016/j.apcata.2020.117489

18. Geboers J., Van de Vyver S., Carpentier K. et al. // Green Chemistry. 2011. V. 13. N. 8. P. 2167—2174. https://doi.org/10.1039/C1GC15350A

19. Grosh A.K., Moffat J.B. // Journal of Catalysis. 1986. V. 101. P. 238. https://doi.org/10.1016/0021-9517(86)90249-6

20. Tarabanko N., Tarabanko V.E., Kukhtetskiy S.V., Taran O.P. // ChemPhysChem. 2019. V. 20. P. 706—718. https://doi.org/10.1002/cphc.201801160

21. Gromov N.V., Medvedeva T.B., Taran O.P., Bukhtiyarov A.V., Aymonier C., Prosvirin I.P., Parmon V.N. // Topics in Catalysis. 2018. V. 61. N. 18—19. P. 1912—1927. https://doi.org/10.1007/s11244-018-1049-4

22. Cheng M., Shi T., Guan H., Wang Sh., Wang X., Jiang Z. // Appl. Catal. B: Environ. 2011. V. 107. N. 1—2. P. 104—109. https://doi.org/10.1016/j.apcatb.2011.07.002


Review

For citations:


Gromov N.V., Medvedeva T.B., Taran O.P., Timofeeva M.N., Parmon V.N. Hydrolysis of Cellulose in the Presence of Catalysts Based on Cesium Salts of Heteropolyacids. Kataliz v promyshlennosti. 2020;20(3):234-242. (In Russ.) https://doi.org/10.18412/1816-0387-2020-3-234-242

Views: 795


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)