Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

The reactivity of platinum hydrides in the selective hydrogenation of acetic acid over Pt-ReOx/TiO2 catalysts

https://doi.org/10.18412/1816-0387-2020-6-426-432

Abstract

In situ DRIFTS was employed to investigate the reaction of hydrogen with supported subnanometer Pt-ReOx species that are active in the hydrogenation of carboxylic acids. Absorption bands of platinum hydrides in the region of 2025–2043 cm–1 were detected; high reactivity of the hydrides toward the adsorbed acetic acid was revealed. In the process, the absorption band of platinum hydride shifted to high frequencies and increased in intensity due to the influence of adjacent acetates on the electronic state of platinum. It was found that in a hydrogen medium the intensity of platinum hydride bands sharply increases after the adsorption of acetic acid and then gradually decreases owing to the reaction of the hydrides with surface acetates.

About the Authors

N. V. Makolkin
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


H. U. Kim
School of Chemical and Biomolecular Engineering, Pusan National University
Korea, Republic of


E. A. Paukshtis
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


J. Jae
School of Chemical and Biomolecular Engineering, Pusan National University
Korea, Republic of


B. S. Bal’zhinimaev
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


References

1. A. Suknev, V. Zaikovskii, V. Kaichev, E. Paukshtis, E. Sadovskaya, B. Bal’zhinimaev // J. Energy Chem. 2015. V. 24. № 5. P. 646—654 DOI: 10.1016/j.jechem.2015.09.003.

2. Y. Takeda, M. Tamura, Y. Nakagawa, K. Okumura, K. Tomishige // ACS Catal. 2015. V. 5. № 11. P. 7034—7047. DOI: 10.1021/acscatal.5b01054.

3. P.A. Dub, T. Ikariya // ACS Catal. 2012. V. 2. № 8 . P. 1718—1741. DOI: 10.1021/cs300341g.

4. B.S. Bal’zhinimaev, E.A. Paukshtis, A.P. Suknev, N.V. Makolkin // J. Energy Chem. 2018. V. 27. № 3. P. 903—912. DOI: 10.1016/j.jechem.2017.07.018.

5. Tamura, M.; Tokonami, K.; Nakagawa, Y.; Tomishige, K. // ACS Catal. 2016. V. 6. № 6. P. 3600—3609. DOI: 10.1021/acscatal.6b00400.

6. Eley D.D., Moran D.M., Rochester C.H. // Trans. Faraday Soc. 1968. V. 64. P. 2168-2180. DOI: 10.1039/TF9686402168.

7. Paleček D., Tek G., Lan J., Iannuzzi M., Hamm P.J. // Phys. Chem. Lett. 2018. V. 9. № 6 P. 1254—1259. DOI: 10.1021/acs.jpclett.8b00310.

8. Carosso M., Vottero E., Lazzarini A., Morandi S., Manzoli M., Lomachenko K.A., Ruiz M.J., Pellegrini R., Lamberti C., Piovano A. Groppo E. // ACS Catal. 2019. V. 9. № 8. P. 7124—7136. DOI: 10.1021/acscatal.9b02079.

9. M. Primet, J.M. Basset, M.V. Mathieu, M. Prettre // J. Catal. 1973. V. 28. № 3. P. 368-375. DOI: 10.1016/0021-9517(73)90129-2.

10. Dixon, L.-T.; Barth, R.; Gryder, J. // J. Catal. 1975. V. 37. № 2. P. 368—375. DOI: 10.1016/0021-9517(75)90171-2.

11. Nanbu, N.; Kitamura, F.; Ohsaka, T.; Tokuda, K. // J. Electroanal. Chem. 2000. V. 485. № 2. P. 128—134. DOI: 10.1016/S0022-0728(00)00104-2.

12. Szilágyi T. // J. Catal. 1990. V. 121. № 2. P. 223-227. DOI: 10.1016/0021-9517(90)90232-9.

13. B.K. Ly, B. Tapin, F. Epron, C. Pinel, C. Especel, M. Besson // Catal. Today 2019. DOI: 10.1016/j.cattod.2019.03.024.

14. J.H. Scofield // J. Electron Spectrosc. Relat. Phenom. 1976. V. 8. № 2. P. 129-137. DOI: 10.1016/0368-2048(76)80015-1.

15. H.-P. Steinrück, F. Pesty, L. Zhang, T.E. Madey // Phys. Rev. B. 1995. V. 51. № 4. P. 2427-2439. DOI: 10.1103/PhysRevB.51.2427.

16. R. Reiche, S. Oswald, K. Wetzig // Appl. Surf. Sci. 2001. V. 179. P. 316-323. DOI: 10.1016/S0169-4332(01)00300-2.

17. A.S.Y. Chan, W. Chen, H. Wang, J.E. Rowe, T.E. Madey // J. Phys. Chem. B. 2004. V. 108. № 38. P. 14643-14651. DOI: 10.1021/jp040168x.

18. H. Wang, A.S.Y. Chan, W. Chen, P. Kaghazchi, T. Jacob, T.E. Madey // ACS Nano. 2007. V. 1. № 5. P. 449-455. DOI: 10.1021/nn700238r.

19. Paál Z., Menon P.G. Hydrogen effects in catalysis: fundamentals and practical applications. M. Dekker, 1988.

20. Kaesz H.D., Saillant R.B. // Chem. Rev. American Chemical Society. 1972. V. 72. № 3. P. 231—281. DOI: 10.1021/cr60277a003.

21. K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, 4th edn., 1986. P. 232-233.

22. L.-F. Liao, C.-F. Lien, J.-L. Lin // Phys. Chem. Chem. Phys. 2001. V. 3. № 17. P. 3831—3837. DOI: 10.1039/B103419G.

23. W. Rachmady, M.A. Vannice // Journal of Catalysis. 2002. V. 207. № 2. P. 317-330. DOI: 10.1006/jcat.2002.3556.

24. C. Mager-Maury, G.Bonnard, C. Chizallet, P. Sautet, P. Raybaud // ChemCatChem. 2011. V. 3. № 1. P. 200—207. DOI: 10.1002/cctc.201000324.


Review

For citations:


Makolkin N.V., Kim H.U., Paukshtis E.A., Jae J., Bal’zhinimaev B.S. The reactivity of platinum hydrides in the selective hydrogenation of acetic acid over Pt-ReOx/TiO2 catalysts. Kataliz v promyshlennosti. 2020;20(6):426-432. (In Russ.) https://doi.org/10.18412/1816-0387-2020-6-426-432

Views: 569


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)