Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Modern trends in the processing of linear alpha olefins to technologically important products. Part 1

https://doi.org/10.18412/1816-0387-2020-6-433-455

Abstract

Linear alpha olefins (LAO) form a class of chemical compounds that are used in the production of highly marketable products, such as plasticizers, synthetic lubricants, surfactants and (co)polymers with the improved operating characteristics. Since the annual world consumption of LAO derivatives is growing, specialists from research institutes, universities and industrial laboratories become involved in LAO processing. The analysis of scientific literature published in recent ten years revealed the absence of general reviews devoted to LAO processing. This review considers modern trends in the processing of LAO, which contain four and more carbon atoms, to technologically important derivatives. General information on the main products obtained by LAO processing, methods of their production and application fields is reported. The existing technological processes used to obtain LAO derivatives as well as the catalysts employed in the processes are briefly described. The review presents modern trends in LAO processing and promising ways for enhancing the available technologies, particularly the development of new types of catalysts. Authors of the review make no pretence to a comprehensive or detailed presentation of the material; the main aim was to give a general idea of the main directions in LAO processing, the catalysts used in such processes, and the advanced approaches to their improvement.

About the Authors

F. S. Golub
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


V. A. Bolotov
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


V. N. Parmon
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


References

1. Polyvinyl chloride compositions: US6608142B1 USA.

2. Impact modifier compositions for rigid PVC compositions of hydrocarbon rubbers and chlorinated polyethylene: US6849694B2 USA.

3. Greiner E.C., Inoguchi Y. Chemical economics handbook: linear-alpha olefins, 2010.

4. Marquis D., Sharman S., House R., Sweeney W. // Journal of the American Oil Chemists Society. 1966. V. 43. № 11. P. 607-614.

5. Takada H., Ishiwatari R. // Environmental science & technology. 1990. V. 24. № 1. P. 86-91.

6. Белов Г. // Катализ в промышленности. 2014. № 3. С. 13–19.

7. Olefin production: US6455648B1 USA.

8. Ethylene oligomerization: EP0537609A EU.

9. Alpha-olefin production: US3647906A USA.

10. Process for preparing linear α-olefins: US4783573A USA.

11. Stache H.W. Anionic Surfactants: Organic Chemistry, 1995.

12. Catalytic synthesis of linear alpha olefins: US3472910A USA.

13. Process for preparing linear α-olefins: US9896391B2 USA.

14. Федоров А., Черкасова Е. // Вестник Казанского технологич. ун-та. 2016. Т. 19. № 7. С. 60–65.

15. Process for converting paraffins to olefins: US4523045A USA.

16. Dehydrogenation catalyst composition: US4914075A USA.

17. Jongsomjit B., Kaewkrajang P., Shiono T., Praserthdam P. Supporting effects of silica-supported methylaluminoxane (MAO) with zirconocene catalyst on ethylene/1-olefin copolymerization behaviors for linear low-density polyethylene (LLDPE) production // Industrial & engineering chemistry research. 2004. V. 43. № 24. P. 7959-7963.

18. Kaminsky W., Piel C., Scharlach K. // Macromolecular Symposia. Wiley Online Library. 2005, P. 25-34.

19. Al-Malaika S., Peng X. // Polymer degradation and stability. 2007. V. 92. № 12. P. 2136-2149.

20. Simanke A.G., Galland G.B., Freitas L., da Jornada J.A.H., Quijada R., Mauler R.S. // Polymer. 1999. V. 40. №. 20. P. 5489-5495.

21. Kim J.D., Soares J.B. // Journal of Polymer Science Part A: Polymer Chemistry. 2000. V. 38. № 9. P. 1427-1432.

22. Low density copolymer composition of two ethylene-α-olefin copolymers: US4438238A USA.

23. Spalding M.A., Chatterjee A. Handbook of Industrial Polyethylene and Technology: Definitive Guide to Manufacturing, Properties, Processing, Applications and Markets Set, 2017.

24. Arndt J.-H., Brüll R., Macko T., Garg P., Tacx J. // Polymer. 2018. V. 156. P. 214-221.

25. De S.K., White J.R., Limited R.T. Rubber Technologist's Handbook, 2001.

26. Exxon mobil chemical: [сайт]. URL: https://www.exxonmobilchemical.com/en?ln=productsservices

27. Freeman A., Mantell S.C., Davidson J.H. // Solar energy. 2005. V. 79. № 6. P. 624-637.

28. Polybutene Piping Systems Association: [сайт]. URL: https://www.pbpsa.com/pb-1-properties

29. Проклеенная бумага и ее применение в процессах высокоскоростной переработки или репрографии: RU2202019C2 РФ.

30. Lappin G., Sauer J. Alpha olefins Applications Handbook, 1989.

31. Klaue A., Kruck M., Friederichs N., Bertola F., Wu H., Morbidelli M. // Industrial & Engineering Chemistry Research. 2018. V. 58. № 2. P. 886-896.

32. McDaniel M.P. // Advances in catalysis. 2010. V. 53 P. 123-606.

33. Hamielec A.E., Soares J.B. // Polypropylene. 1999. V. 2. P. 446-453.

34. Kaminsky W. // Journal of Polymer Science Part A: Polymer Chemistry. 2004. V. 42. № 16. P. 3911-3921.

35. Jeremic D. // Ullmann's Encyclopedia of Industrial Chemistry. 2000. P. 1-42.

36. Langhauser F., Kerth J., Kersting M., Kölle P., Lilge D., Müller P. // Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics. 1994. V. 223. № 1. P. 155-164.

37. Olabisi O., Adewale K. Handbook of Thermoplastics, 1997.

38. Olefin polymer and production processes thereof: US6838540B2, USA.

39. Polymerisation catalysts: EP1131361B1 EU.

40. Supported polyolefin catalyst for the (co-)polymerization of ethylene in gas phase: EP0453088A1 EU.

41. Ushakova T., Starchak E., Krasheninnikov V., Samoilenko A., Ivchenko P., Nifant’ev I., Novokshonova L. // Kinetics and Catalysis. 2012. V. 53. № 1. P. 75-83.

42. Czaja K., Białek M., Utrata A. // Journal of Polymer Science Part A: Polymer Chemistry. 2004. V. 42. № 10. P. 2512-2519.

43. Fujita T., Kawai K. // Topics in Catalysis. 2014. V. 57. № 10-13. P. 852-877.

44. Makio H., Terao H., Iwashita A., Fujita T. // Chemical reviews. 2011. V. 111. № 3. P. 2363-2449.

45. Furuyama R., Mitani M., Mohri J.-i., Mori R., Tanaka H., Fujita T. // Macromolecules. 2005. V. 38. № 5. P. 1546-1552.

46. Gagieva S.C., Tuskaev V., Takazova R., Buyanovskaya A., Smirnova O., Bravaya N., Bulychev B. // Russian Chemical Bulletin. 2019. V. 68. № 11. P. 2114-2118.

47. Mun T.C. Production of Polyethylene Using Gas Fluidized Bed Reactor // Hydrocarbon Processing. 2003.

48. Carraher C.E., Craver C.D. Applied polymer science: 21st century, 2000.

49. Wagner J.D., Lappin G.R., Zietz J.R. Alcohols, Higher Aliphatic, Synthetic Processes // Kirk‐Othmer Encyclopedia of Chemical Technology. 2000.

50. Апостолов С., Бабаш С., Белкина Е., Беренц А. Новый справочник химика и технолога. Сырье и продукты промышленности органических и неорганических веществ. Ч. 2. 2006.

51. Process for the production of 7-17 C aliphatic alcohols comprises cobalt catalyzed hydroformylation of 3-16C olefins whereby the organic phase is extracted with a water containing liquid: DE10227995A1 Germany.

52. Zakzeski J., Lee H.R., Leung Y.L., Bell A.T. // Applied Catalysis A: General. 2010. V. 374. № 1-2. P. 201-212.

53. Sandee A.J., Reek J.N., Kamer P.C., van Leeuwen P.W. // Journal of the American Chemical Society. 2001. V. 123. № 35. P. 8468-8476.

54. Takahashi K., Yamashita M., Nozaki K. // Journal of the American Chemical Society. 2012. V. 134. № 45. P. 18746-18757.

55. Kamer P.C., Van Leeuwen P.W., Reek J.N. // Accounts of chemical research. 2001. V. 34. № 11. P. 895-904.

56. Conley B.L., Pennington-Boggio M.K., Boz E., Williams T.J. // Chemical reviews. 2010. V. 110. № 4. P. 2294-2312.

57. Fogg D.E., dos Santos E.N. // Coordination chemistry reviews. 2004. V. 248. № 21-24. P. 2365-2379.

58. Torres G.M., Frauenlob R., Franke R., Börner A. // Catalysis Science & Technology. 2015. V. 5. № 1. P. 34-54.

59. Srivastava V.K., Shukla R.S., Bajaj H.C., Jasra R.V. // Applied Catalysis A: General. 2005. V. 282. № 1-2. P. 31-38.

60. Wu L., Fleischer I., Jackstell R., Profir I., Franke R., Beller M. // Journal of the American Chemical Society. 2013. V. 135. № 38. P. 14306-14312.

61. Ropartz L.C., Morris R.E., Foster D.F., Cole-Hamilton D.J. // Journal of Molecular Catalysis A: Chemical. 2002. V. 182. P. 99-105.

62. Takahashi K., Nozaki K. // Organic letters. 2014. V. 16. № 22. P. 5846-5849.

63. Konya D., Almeida Leñero K.Q., Drent E. // Organometallics. 2006. V. 25. № 13. P. 3166-3174.

64. Cuny G.D., Buchwald S.L. // Journal of the American Chemical Society. 1993. V. 115. № 5. P. 2066-2068.

65. Hydroformylation process: US4593127A USA.

66. Pruett R.L., Smith J.A. // The Journal of Organic Chemistry. 1969. V. 34. № 2. P. 327-330.

67. Arderne C., Holzapfel C.W., Bredenkamp T. // ChemCatChem. 2016. V. 8. № 6. P. 1084-1093.

68. Suerbaev K.A., Kudaibergenov N.Z., Vavasori A. // Russian Journal of General Chemistry. 2017. V. 87. № 4. P. 707-712.

69. Chepaikin E., Bezruchenko A., Suerbaev K.A., Shalmagambetov K. // Petroleum Chemistry. 2006. V. 46. № 2. P. 117-121.

70. Akiri S.O., Ojwach S.O. // Catalysts. 2019. V. 9. № 2. P. 143.

71. Hydroformylation process: US6331656B1 USA.

72. Hydroformylation: US7405329B2 USA.

73. Process for hydroformylation of an olefin: US5105018A USA.

74. Cornils B., Herrmann W.A., Xu J.-H., Zanthoff H.-W. Catalysis from A to Z: a concise encyclopedia, 2020.

75. Rosales M., González A., González B., Moratinos C., Pérez H., Urdaneta J., Sánchez-Delgado R.A. // Journal of organometallic chemistry. 2005. V. 690. № 12. P. 3095-3098.

76. Makado G., Morimoto T., Sugimoto Y., Tsutsumi K., Kagawa N., Kakiuchi K. // Advanced Synthesis & Catalysis. 2010. V. 352. № 2‐3. P. 299-304.

77. Cowan-Ellsberry C., Belanger S., Dorn P., Dyer S., McAvoy D., Sanderson H., Versteeg D., Ferrer D., Stanton K. // Critical reviews in environmental science and technology. 2014. V. 44. № 17. P. 1893-1993.

78. Hutchinson E., Manchester K.E., Winslow L. // The Journal of Physical Chemistry. 1954. V. 58. № 12. P. 1124-1127.

79. Penfold J., Thomas R.K., Li P., Petkov J.T., Tucker I., Cox A.R., Hedges N., Webster J.R., Skoda M.W. // Langmuir. 2014. V. 30. № 32. P. 9741-9751.

80. Kosswig K. Surfactants, Ullmann's Encyclopedia of Industrial Chemistry, 2000.

81. Process for the preparation of alkanol alkoxylates: EP0082554B1 EU.

82. Heterogeneous alkoxylation using anion-bound metal oxides: US5136106A USA.

83. Continuous process for producing linear, secondary, aliphatic alcohol ethoxylates: US4927954A USA.

84. Di Serio M., Lengo P., Gobetto R., Bruni S., Santacesaria E. // Journal of Molecular Catalysis A: Chemical. 1996. V. 112. № 2. P. 235-251.

85. Condensation of alkylene oxides: US3328467A USA.

86. Ethoxylation with strontium bases: US4223164A USA.

87. Barium oxide/cresylic acid catalyzed ethoxylation: US4210764A USA.

88. Domingo X. Anionic Surfactants: Organic Chemistry: Alcohol and alcohol ether sulfates, 1996.

89. Integrated system for the continuous production of alcohol sulfates: US3370926A USA.

90. Process for the production of alcohol sulfates: US3337601A USA

91. Ингибирование нарастаний в реакционных сосудах: EA200101220A1 Евразия.

92. Cox M.F. // Journal of the American Oil Chemists Society. 1989. V. 66. № 11. P. 1637-1646.


Review

For citations:


Golub F.S., Bolotov V.A., Parmon V.N. Modern trends in the processing of linear alpha olefins to technologically important products. Part 1. Kataliz v promyshlennosti. 2020;20(6):433-455. (In Russ.) https://doi.org/10.18412/1816-0387-2020-6-433-455

Views: 1307


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)