

Thermocatalytic decomposition of methane on carbon materials and its application in hydrogen production technologies
https://doi.org/10.18412/1816-0387-2021-1-2-47-54
Abstract
It is topical now to find the ways of hydrogen production that would eliminate emission of carbon oxides into the atmosphere and provide implementation of the so-called low-carbon economy. The production of hydrogen via thermocatalytic methane decomposition (CMD) on carbon catalysts makes it possible to obtain not only a valuable environmentally friendly fuel represented by hydrogen but also various carbon materials that could be applied in different industries. The use of carbon catalysts is essential for economic efficiency of the methane decomposition process. This work is a review of CMD fundamentals and a brief report on the catalytic activity of carbon materials (activated carbon, carbon black, nanotubes and nanofibers) differing in their structure, physical and chemical properties, which were studied in the indicated process. The main problems and prospects for application of this technology were revealed.
About the Authors
A. R. OsipovRussian Federation
I. A. Sidorchik
Russian Federation
D. A. Shlyapin
Russian Federation
V. A. Borisov
Russian Federation
N. N. Leontieva
Russian Federation
A. V. Lavrenov
Russian Federation
References
1. Böhringer C., Cantner U., Costard J., Kramkowski L.V., Gatzen C., Pietsch S. // Energy Policy. V. 144. doi: 10.1016/j.enpol.2020.111611.
2. Flamme S., Benrath D., Glanz S., Hoffart F., Pielow C., Roos M., Span R., Wagner H.J., Schönauer A.L. // Energy Procedia. V. 158. P. 3709—3714. doi: 10.1016/j.egypro.2019.01.887.
3. Fragkos P. et al. // Energy. V. 216. doi: 10.1016/j.energy.2020.119385.
4. Zhiznin S.Z., Timokhov V.M., Gusev A.L. // Int. J. Hydrogen Energy. V. 45. P. 31353—31366. doi: 10.1016/j.ijhydene.2020.08.260.
5. Muradov N.Z., Veziroğlu T.N. // Int. J. Hydrogen Energy. V. 30. P. 225—237. doi: 10.1016/j.ijhydene.2004.03.033.
6. Grigoriev S.A., Fateev V.N., Bessarabov D.G., Millet P. // Int. J. Hydrogen Energy. V. 45. P. 26036–26058. doi: 10.1016/j.ijhydene.2020.03.109.
7. Du L., Sun Y., You B. // Mater. Reports Energy. P. 100004. doi: 10.1016/j.matre.2020.12.001.
8. Wang D., Li W., Liu J., Gao Z., Xu G., Cui Y. // Int. J. Hydrogen Energy. V. 45. P. 30431—30442. doi: 10.1016/j.ijhydene.2020.08.039.
9. Abbas H.F., Wan Daud W.M.A. // Int. J. Hydrogen Energy. V. 35. P. 1160—1190. doi: 10.1016/j.ijhydene.2009.11.036.
10. Ashik U P.M., Wan Daud W.M.A., Abbas H.F. // Renew. Sustain. Energy Rev. V. 44. P. 221—256. doi: 10.1016/j.rser.2014.12.025.
11. Serrano D.P., Botas J.A., Fierro J.L.G., Guil-López R., Pizarro P., Gómez G. // Fuel. V. 89. P. 1241—1248. doi: 10.1016/j.fuel.2009.11.030.
12. Züttel A. // Naturwissenschaften. V. 91. P. 157—172. doi: 10.1007/s00114-004-0516-x.
13. Konieczny A., Mondal K., Wiltowski T., Dydo P. // Int. J. Hydrogen Energy. V. 33. P. 264—272. doi: 10.1016/j.ijhydene.2007.07.054.
14. Henao W., Cazaña F., Tarifa P., Romeo E., Latorre N., Sebastian V., Delgado J.J., Monzón A. // Chem. Eng. J. V. 404. P. 126103. doi: 10.1016/j.cej.2020.126103.
15. Zhang J., Xie W., Li X., Hao Q., Chen H., Ma X. // Int. J. Hydrogen Energy. V. 44. P. 2633—2644. doi: 10.1016/j.ijhydene.2018.12.005.
16. Zhang J., Xie W., Li X., Hao Q., Chen H., Ma X. // Energy Convers. Manag. V. 177. P. 330—338. doi: 10.1016/j.enconman.2018.09.075.
17. Wang Y., Zhang Y., Zhao S., Zhu J., Jin L., Hu H. // Carbon Resour. Convers. V. 3. P. 190—197. doi: 10.1016/j.crcon.2020.12.002.
18. Kim S.E., Jeong S.K., Park K.T., Lee K.Y., Kim H.J. // Catal. Commun. V. 148. P. 106167. doi: 10.1016/j.catcom.2020.106167.
19. Fidalgo B., Menéndez J.Á. // Chinese J. Catal. V. 32. P. 207—216. doi: https://doi.org/10.1016/S1872-2067(10)60166-0
20. Muradov N. // Catal. Commun. V. 2. P. 89—94. doi: https://doi.org/10.1016/S1566-7367(01)00013-9
21. Abanades S., Flamant G. // Chem. Eng. Process. Process Intensif. V. 47. P. 490—498. doi: 10.1016/j.cep.2007.01.006.
22. Steinberg M. // Int. J. Hydrogen Energy. V. 24. P. 771—777. doi: 10.1016/S0360-3199(98)00128-1.
23. Muradov N.Z. // Int. J. Hydrogen Energy. V. 18. P. 211—215. doi: 10.1016/0360-3199(93)90021-2.
24. Muradov N. // Int. J. Hydrogen Energy. V. 26. P. 1165—1175. doi: 10.1016/S0360-3199(01)00073-8.
25. Zhansakova K.S., Russkikh G.S., Eremin E.N., Kropotin O.V. // AIP Conf. Proc. V. 2285. doi: 10.1063/5.0027255.
26. Wang W.J., Wu C.H. // Constr. Build. Mater. V. 47. P. 616—622. doi: 10.1016/j.conbuildmat.2013.05.066.
27. Dinesh A., Abirami B., Moulica G. // Mater. Today Proc. doi: 10.1016/j.matpr.2020.10.526.
28. Wang X., Mikulčić H., Dai G., Zhang J., Tan H., Vujanović M. // J. Clean. Prod. V. 293. P. 126090. doi: 10.1016/j.jclepro.2021.126090
29. Su D.S., Perathoner S., Centi G. // Chem. Rev. V. 113. P. 5782—5816. doi: 10.1021/cr300367d.
30. de Souza Abreu F., Ribeiro C.C., da Silva Pinto J.D., Nsumbu T.M., Buono V.T.L. // J. Clean. Prod. V. 273. P. 122920. doi: 10.1016/j.jclepro.2020.122920.
31. Патент РФ 2536141 С2, опубл. 2013.
32. Патент РФ 2545585 С1, опубл. 2013.
33. Патент РФ 2561435 С1, опубл. 2014.
34. Патент РФ 2627335 С2, опубл. 2016.
35. Патент РФ 2386599 С1, опубл. 2008.
36. Патент РФ 2420472 С1, опубл. 2010.
37. Патент РФ 2515007 С1, опубл. 2013.
38. Патент РФ 2592509 С1, опубл. 2015.
39. P’yanova L.G., Drozdov V.A., Sedanova A.V., Kornienko N.V. // Russ. J. Appl. Chem. V. 92. P. 940—945. doi: 10.1134/S1070427219070097.
40. Dorozhkin V.I., Fedorov Y.N., Gerunova L.K., P’Yanova L.G., Gerunov T.V., Delyagina M.S., Tarasenko A.A. // Sel’skokhozyaistvennaya Biol. V. 55. P. 394—405. doi: 10.15389/agrobiology. 2020.2.394eng.
41. P’Yanova L.G., Kornienko N.V., Ogurtsova D.N., Lavrenov A.V. // AIP Conf. Proc. V. 2301. doi: 10.1063/5.0033018.
42. P’yanova L.G., Drozdov V.A., Sedanova A.V., Arbuzov A.B., Lavrenov A.V. // Prot. Met. Phys. Chem. Surfaces. V. 56. P. 688—692. doi: 10.1134/S2070205120040206.
43. P’yanova L.G., Likholobov V.A., Drozdov V.A., Baklanova O.N., Talzi V.P., Sedanova A.V., Drozdetskaya M.S., Kornienko N.V. // Prot. Met. Phys. Chem. Surfaces. V. 53. P. 639—644. doi: 10.1134/S2070205117040189.
44. Dhanesh S., Kumar K.S., Maruthur P., Rejumon R., Usmansha G.S. // Mater. Today Proc. doi: 10.1016/j.matpr.2020.04.730.
45. Al-Hassani A.A., Abbas H.F., Wan Daud W.M.A. // Int. J. Hydrogen Energy. V. 39. P. 14783—14791. doi: 10.1016/j.ijhydene.2014.07.031.
46. Abánades A., Rubbia C., Salmieri D. // Energy. V. 46. P. 359—363. doi: 10.1016/j.energy.2012.08.015.
47. Lee S.C., Seo H.J., Han G.Y. // Korean J. Chem. Eng. V. 30. P. 1716—1721. doi: 10.1007/s11814-013-0107-7.
48. Abbas H.F., Wan Daud W.M.A. // Fuel Process. Technol. V. 90. P. 1167—1174. doi: 10.1016/j.fuproc.2009.05.024.
49. Muradov N., Smith F., T-Raissi A. // Catal. Today. V. 102—103. P. 225—233. doi: 10.1016/j.cattod.2005.02.018.
50. Pinilla J.L., Suelves I., Lázaro M.J., Moliner R. // Chem. Eng. J. V. 138. P. 301—306. doi: 10.1016/j.cej.2007.05.056.
51. Serrano D.P., Botas J.A., Guil-Lopez R. // Int. J. Hydrogen Energy. V. 34. P. 4488—4494. doi: 10.1016/j.ijhydene.2008.07.079.
52. Dufour A., Celzard A., Ouartassi B., Broust F., Fierro V., Zoulalian A. // Appl. Catal. A Gen. V. 360. P. 120—125. doi: 10.1016/j.apcata.2009.02.033.
53. Shilapuram V., Ozalp N., Oschatz M., Borchardt L., Kaskel S., Lachance R. // Ind. Eng. Chem. Res. V. 53. P. 1741—1753. doi: 10.1021/ie402195q.
54. Serrano D.P., Botas J.Á., Pizarro P., Gómez G. // Int. J. Hydrogen Energy. V. 38. P. 5671—5683. doi: 10.1016/j.ijhydene.2013.02.112.
55. Abbas H.F., Baker I.F. // Int. J. Hydrogen Energy. V. 36. P. 8985—8993. doi: 10.1016/j.ijhydene.2011.05.005.
56. Lee K.K., Han G.Y., Yoon K.J., Lee B.K. // Catal. Today. V. 93—95. P. 81—86. doi: 10.1016/j.cattod.2004.06.080.
57. Abbas H.F., Daud W.M.A.W. // Int. J. Hydrogen Energy. V. 34. P. 6231—6241. doi: 10.1016/j.ijhydene.2009.05.143.
58. Abbas H.F., Daud W.M.A.W. // Int. J. Hydrogen Energy. V. 34. P. 8034—8045. doi: 10.1016/j.ijhydene.2009.08.014.
59. Malaika A., Kozłowski M. // Int. J. Hydrogen Energy. V. 34. P. 2600—2605. doi: 10.1016/j.ijhydene.2009.01.052.
60. Malaika A., Kozłowski M. // Int. J. Hydrogen Energy. V. 35. P. 10302—10310. doi: 10.1016/j.ijhydene.2010.07.176.
61. Kim M.S., Lee S.Y., Kwak J.H., Han G.Y., Yoon K.J. // Korean J. Chem. Eng. V. 28. P. 1833—1838. doi: 10.1007/s11814-011-0064-y.
62. Pinilla J.L., Suelves I., Lázaro M. J., Moliner R. // J. Power Sources. V. 192. P. 100—106. doi: 10.1016/j.jpowsour.2008.12.074.
63. Malaika A., Krzyzyńska B., Kozłowski M. // Int. J. Hydrogen Energy. V. 35. P. 7470—7475. doi: 10.1016/j.ijhydene.2010.05.026.
64. Kim M.H., Lee E.K., Jun J.H., Kong S.J., Han G.Y., Lee B.K., Lee T.J., Yoon K.J. // Int. J. Hydrogen Energy. V. 29. P. 187—193. doi: 10.1016/S0360-3199(03)00111-3.
65. Wang J., Jin L., Li Y., Wang M., Hu H. // Int. J. Hydrogen Energy. V. 43. P. 17611—17619. doi: 10.1016/j.ijhydene.2018.07.179.
66. Ampelli C., Perathoner S., Centi G. // Cuihua Xuebao/Chinese J. Catal. V. 35. P. 783—791. doi: 10.1016/s1872-2067(14)60139-x.
67. Krzyzyński S., Kozłowski M. // Int. J. Hydrogen Energy. V. 33. P. 6172—6177. doi: 10.1016/j.ijhydene.2008.07.091.
68. Bai Z., Chen H., Li W., Li B. // Int. J. Hydrogen Energy. V. 31. P. 899—905. doi: 10.1016/j.ijhydene.2005.08.001.
69. Lee E.K., Lee S.Y., Han G.Y., Lee B.K., Lee T.J., Jun J.H., Yoon K.J. // Carbon N. Y. V. 42. P. 2641—2648. doi: 10.1016/j.carbon.2004.06.003.
70. Dufour A., Celzard A., Fierro V., Martin E., Broust F., Zoulalian A. // Appl. Catal. A Gen. V. 346. P. 164—173. doi: 10.1016/j.apcata.2008.05.023.
71. Wei L., Tan Y.S., Han Y.Z., Zhao J.T., Wu J., Zhang D. // Fuel. V. 90. P. 3473—3479. doi: 10.1016/j.fuel.2011.06.053.
72. Wang J., Jin L., Li Y., Jia C., Hu H. // Int. J. Hydrogen Energy. V. 41. P. 10661—10669. doi: 10.1016/j.ijhydene.2016.04.021.
73. Shen Y., Lua A.C. // J. Colloid Interface Sci. V. 462. P. 48—55. doi: 10.1016/j.jcis.2015.09.050.
74. Botas J.A., Serrano D.P., Guil-López R., Pizarro P., Gómez G. // Int. J. Hydrogen Energy. V. 35. P. 9788—9794. doi: 10.1016/j.ijhydene.2009.10.031.
75. Moliner R., Suelves I., Lázaro M. J., Moreno O. // Int. J. Hydrogen Energy. V. 30. Pp. P. 293—300. doi: 10.1016/j.ijhydene.2004.03.035.
76. Kameya Y., Hanamura K. // Carbon N. Y. V. 50. P. 3503—3512. doi: 10.1016/j.carbon.2012.03.018.
77. Bai Z., Li W., Bai J., Li B., Chen H. // Energy Sources, Part A Recover. Util. Environ. Eff. V. 34. Pp. P. 1145—1153. doi: 10.1080/15567031003663174.
78. Suelves I., Pinilla J. L., Lázaro M. J., Moliner R. // Chem. Eng. J. V. 140. P. 432—438. doi: 10.1016/j.cej.2007.11.014.
79. Serrano D.P., Botas J.Á., Pizarro P., Guil-López R., Gómez G. // Chem. Commun. P. 6585—6587. doi: 10.1039/b811800k.
80. Shilapuram V., Ozalp N., Oschatz M., Borchardt L., Kaskel S. // Carbon N. Y. V. 67. P. 377—389. doi: 10.1016/j.carbon.2013.10.008.
Review
For citations:
Osipov A.R., Sidorchik I.A., Shlyapin D.A., Borisov V.A., Leontieva N.N., Lavrenov A.V. Thermocatalytic decomposition of methane on carbon materials and its application in hydrogen production technologies. Kataliz v promyshlennosti. 2021;1(1-2):47-54. (In Russ.) https://doi.org/10.18412/1816-0387-2021-1-2-47-54