КАТАЛИЗ В ХИМИЧЕСКОЙ И НЕФТЕХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ
Исследовано коксование в отсутствие и с добавлением катализатора 7%Ni/УНТ. Показано, что при температуре 350 °С в отсутствии катализатора коксование гудрона приводит к образованию газообразных и жидких продуктов и нефтяного кокса. Продукты термолиза образуются за счет отрыва боковых углеводородных цепей от исходных полиароматических углеводородов. Газообразные продукты состоят из С1–С6 углеводородов и серосодержащих газов H2S и COS. Изучен фракционный состав жидких продуктов термолиза. Установлено, что 50 % жидких продуктов представляют собой бензиновую и дизельную фракции. Методом пропитки был приготовлен катализатор 7%Ni/УНТ. Исследовано влияние катализатора 7%Ni/УНТ на процесс коксования гудрона в интервале температур 300–550 °С. Добавка катализатора 7%Ni/УНТ к гудрону приводит к увеличению выхода кокса и к уменьшению содержания в нем серы за счет перевода части серы в сероводород и COS, которые удаляются с газовой фазой. Электронно-микроскопическое изучение показало, что при каталитическом коксовании гудрона полученный нефтяной кокс оказывается армированным углеродными нанотрубками.
Для кобальтовых катализаторов синтеза Фишера – Тропша чрезвычайно важно, какие промоторы и в каком количестве добавляют к ним. В связи с этим было исследовано действие оксида ванадия (V2O5) в качестве предлагаемого промотора для кобальтового катализатора, нанесенного на оксид титана (TiO2). Три катализатора с разным количеством добавленного промотора V2O5 (0, 1 и 3 мас.%) были получены пропиткой по влагоемкости и охарактеризованы с помощью определения удельной поверхности методом БЭТ, рентгенофазового анализа температурно-программируемого восстановления и просвечивающей электронной микроскопии. Для испытания катализаторов использовали реактор с неподвижным слоем. Установлено, что катализатор, содержащий 1 мас.% V2O5, обладает наилучшими характеристиками среди исследованных образцов, поскольку он демонстрирует исключительную селективность (92 % С5+ и 5,7 % СН4) и вместе с тем сохраняет величину конверсии СО, сравнимую с аналогичным показателем для непромотированного катализатора. Кроме того, сообщается, что избыточное добавление промотора V2O5 (>1 мас.%) во введенный катализатор приводит к негативному воздействию на степень превращения СО и селективность С5+, главным образом за счет уменьшения числа активных центров при добавлении V2O5.
Данный обзор является первой частью серии обзоров, посвященных прямому синтезу оловоорганических соединений. В этой части серии рассматриваются условия и результаты взаимодействия сплавов олова с органогалогенидами. Дается анализ эффективности применения катализаторов и перспектив использования сплавов олова для получения оловоорганических соединений, а также обсуждаются возможные схемы механизма этих процессов.
Изучено влияние качества отечественных промышленных цеолитов HZSM-5 разных марок на свойства бифункционального кобальтового катализатора в форме композитной смеси в процессе синтеза Фишера – Тропша. Проведено сравнение активности и селективности образцов катализаторов. Исследован фракционный и углеводородный состав продуктов синтеза, определены вязкостно-температурные характеристики дизельной фракции топлива. Выбран перспективный образец цеолита HZSM-5 для практической реализации каталити- ческой технологии.
Глубокое окисление углеводородов на платиновых катализаторах лежит в основе большинства процессов очистки газовых выбросов промышленных предприятий. Поскольку в составе отходящих газов обычно присутствует монооксид углерода, важно изучить его влияние на кинетику окисления углеводородов. В данной работе представлены результаты исследования кинетики окисления пропана на платиновом стекловолокнистом катализаторе в присутствии и в отсутствие СO в реакционной смеси. Обнаружено, что при низких температурах присутствие СО сильно тормозит окисление пропана, при повышении температуры эффект от СО изменяется с отрицательного на положительный. Численное моделирование показало, что разнонаправленность эффекта можно объяснить конкурирующей адсорбцией кислорода, пропана и CO на активных центрах катализатора.
Актуальной задачей на сегодняшний день является поиск путей получения водорода, позволяющих избежать выбросов оксидов углерода в атмосферу и обеспечивающих реализацию так называемой низкоуглеродной энергетики. Производство водорода путем термокаталитического разложения метана (CMD) на углеродных катализаторах позволяет получать не только ценное экологически чистое топливо в виде водорода, но и широкий спектр углеродных материалов, которые могут найти применение в различных отраслях промышленности. Использование углеродных катализаторов имеет важное значение для экономической эффективности процесса разложения метана. Данная работа представляет собой обзор основ CMD и краткое изложение результатов исследования каталитической активности в этом процессе углеродных материалов (активированного угля, технического углерода, нанотрубок, нановолокон), отличающихся строением, физическими и химическими свойствами. Выявлены основные проблемы и перспективы использования данной технологии.
Изучено влияние высокотемпературной обработки на термическую устойчивость графитоподобного углеродного материала Сибунита в условиях окислительной среды в зависимости от присутствия активного компонента – Pt, Pd или Ru. Согласно результатам термического анализа, предварительная высокотемпературная обработка Сибунита приводит к увеличению температуры начала окисления углерода. Установлено, что выдерживание образцов Ru/Сибунит в течение 4 ч в смеси азот–воздух (1 : 1), при температуре 400 °С приводит к частичному разрушению пироуглеродного каркаса Сибунита и увеличению среднего размера частиц Ru. На примере Ru показано, что рутениевые катализаторы могут эффективно окислять СО при температуре не выше 200 °С и выдерживать температурные перегревы до 400 °С без значительного снижения активности.
Изучено превращение смесей метан – этан и метан – этилен, водород – этан и водород – этилен на нагреваемом электрическим током резистивном фехралевом катализаторе. Поверхность катализатора в ходе превращения покрывается графитоподобными углеродными отложениями, оказывающими дополнительное каталитическое воздействие, в результате которого образуются углеводороды С3 и С4. Образование последних, по-видимому, происходит с участием образующегося из этана этилена. Присутствие водорода подавляет закоксовывание поверхности катализатора и приводит к снижению выходов углеводородов С3 и С4.
В настоящем обзоре обсуждаются особенности жидкофазного окисления алкенов в кетоны или альдегиды в присутствии соединений палладия (Вакер-окисление). Показано, что подбор подходящих условий реакции, а именно эффективного состава катализатора, окислителя и растворителя, позволяет из терминальных алкенов избирательно получать либо кетоны, либо альдегиды, а из алкенов с внутренней двойной связью – кетоны.
Работа посвящена исследованию процесса получения закиси азота путем селективного окисления аммиака в микрореакторе (МКР), выполненном в форме металлического диска с цилиндрическими каналами, заполненными оксидным марганец-висмутовым катализатором. Представлена 3D математическая модель МКР, учитывающая аксиальный и радиальный тепло- и массоперенос, каталитические реакции и изменение в связи с этим объема реакционной смеси, теплообмен между диском и каналами, теплопроводность диска. Определены параметры, обеспечивающие максимальную производительность по закиси азота с учетом ограничений по температуре в каналах МКР. Наибольшая эффективность процесса получения закиси азота достигается при температуре наружной кромки реактора 370 °С и входной концентрации аммиака 20 об.%. Производительность единицы объема катализатора в МКР примерно в 1,5 раза выше, чем в трубчатом реакторе, а максимальная температура соответствует оптимальной, которая обеспечивает наилучшую селективность процесса по закиси азота.
КАТАЛИЗ И НАНОТЕХНОЛОГИИ
Каталитическое гидрирование тройной углерод-углеродной связи ацетиленовых соединений является важным промышленным процессом. При этом необходимо обеспечить высокую селективность по олефиновому соединению. В данной работе рассматривается влияние обработки палладиевых катализаторов на основе сверхсшитого полистирола (СПС) карбонатом натрия на активность и селективность в реакциях гидрирования 2-метил-3-бутин-2-ола и фенилацетилена. Показано, что эффект, достигаемый такой обработкой, зависит от использованного прекурсора палладия, а также от типа полимерного носителя (нефункционализированный СПС или содержащий третичные аминогруппы). При атмосферном давлении водорода и температуре 90 °С в среде толуола для катализаторов 1%-Pd/СПС, обработанных Na2CO3, в реакции гидрирования 2-метил-3-бутин-2-ола достигается 98 %-ная селективность (при 95 %-ной конверсии субстрата), тогда как в реакции гидрирования фенилацетилена селективность составляет 99,5 %.
БИОКАТАЛИЗ
γ-Валеролактон (ГВЛ) – ценное химическое соединение, молекула-платформа, рассматривается как промежуточный продукт для синтеза химических соединений с высокой добавленной стоимостью, компонентов моторных топлив и биополимеров. ГВЛ хорошо зарекомендовал себя как экологически безопасный растворитель, топливная присадка, ароматизатор и пищевая добавка. В данном обзоре обобщены последние достижения в области разработки каталитических методов получения ГВЛ из левулиновой кислоты (ЛК), алкил-левулинатов (АЛ), а также углеводов и растительных полимеров. Особое внимание уделено гетерогенным катализаторам на основе металлов и оксидов металлов, более перспективным для практического применения. Детально рассмотрены предлагаемые механизмы процессов и обсуждена перспектива использования водородо-донорных растворителей в процессах получения ГВЛ. Проведено сравнение катализаторов, проявивших наилучшие каталитические свойства с точки зрения важного для промышленного катализа параметра − их производительности.
ХРОНИКА
ISSN 2413-6476 (Online)