

The effect of Sibunit graphitization on the stability of Ru/(Pt, Pd)/Sibunit catalysts in an oxidizing atmosphere at elevated temperatures
https://doi.org/10.18412/1816-0387-2021-1-2-55-61
Abstract
The effect of high-temperature treatment on the thermal stability of a graphitic carbon material Sibunit in an oxidizing medium was studied in dependence on the presence of active component – Pt, Pd or Ru. According to thermal analysis data, a high-temperature pretreatment of Sibunit increases the onset temperature of carbon oxidation. It was found that holding of the Ru/Sibunit samples for 4 h in a nitrogen: air (1 : 1) mixture at a temperature of 400 °С resulted in a partial destruction of the pyrocarbon matrix of Sibunit and increased the mean size of Ru particles. It was demonstrated that ruthenium catalysts can efficiently oxidize CO at a temperature not higher than 200 °С and withstand overheats up to 400 °С without a significant loss in activity.
About the Authors
V. A. BorisovRussian Federation
K. N. Iost
Russian Federation
V. L. Temerev
Russian Federation
Yu. V. Surovikin
A. R. Osipov
Russian Federation
M. V. Trenikhin
Russian Federation
A. A. Smorokov
Russian Federation
D. A. Shlyapin
Russian Federation
References
1. Cargnello M., Doan-Nguyen V.V.T., Gordon T.R., Diaz R.E., Stach E.A., Gorte R.J., Fornasiero P., Murray C.B. // Science. 2013. V. 341. P. 771—773. https://doi.org/10.1126/science.1240148
2. Ivanova A.S., Slavinskaya E.M., Gulyaev R.V., Zaikovskii V.I., Stonkus О.А., Danilova I.G., Plyasova L.M., Polukhina I.A., Boronin A.I. // Appl Catal B Environ. 2010. V. 97. P. 57—71. https://doi.org/https://doi.org/10.1016/j.apcatb.2010.03.024
3. Iost K.N., Borisov V.A., Temerev V.L., Surovikin Y.V., Pavluchenko P.E., Trenikhin M.V., Lupanova A.A., Arbuzov A.B., Shlyapin D.A., Tsyrulnikov P.G., Vedyagin A.A. // Surfaces and Interfaces. 2018. V. 12. P. 95—101. DOI: 10.1016/j.surfin.2018.05.003.
4. Alikin E.A., Vedyagin A.A. // Top Catal. 2016. V. 59. P. 1033—1038. https://doi.org/10.1007/s11244-016-0585-z
5. Batygina M.V., Dobrynkin N.M., Noskov A.S. // Adv Environ Res. 2000. V. 4. P. 123—132. https://doi.org/https://doi.org/10.1016/S1093-0191(00)00014-9
6. Dobrynkin NM, Batygina M V, Noskov AS, Tsyrulnikov P.G., Shlyapin D.A., Schegolev V.V., Astrova D.A., Laskin B.M. // Top Catal. 2005. V. 33. P. 69—76. https://doi.org/10.1007/s11244-005-2507-3
7. Booth TJ, Pizzocchero F, Andersen H, Hansen T.W., Wagner
8. J.B., Jinschek J.R., Dunin-Borkowski R.E., Hansen O., Bøggild P. // Nano Lett. 2011. V. 11. P. 2689—2692. https://doi.org/10.1021/nl200928k
9. Lobo L.S., Carabineiro S.A.C. // Fuel. 2016. V. 183. P. 457—469. https://doi.org/10.1016/J.FUEL.2016.06.115
10. Pizzocchero F., Vanin M., Kling J., Hansen T.W., Jacobsen K.W., Boggild P. // J. Phys. Chem. 2014. V. 118. P. 4296. DOI: 10.1021/jp500800n.
11. Borisov V.A., Iost K.N., Temerev V.L., Simonova A.D., Belopukhov E.A., Sigaeva S.S., Smorokov A.A., Trenikhin M.V., Savel’eva G.G., Muromtsev I.V., Osipov A.R., Shlyapin D.A. // Solid Fuel Chem. 2020. V. 54. P. 385—391. https://doi.org/10.3103/S0361521920060026
12. Borisov, V.A., Iost, K.N., Temerev, V.L., Fedotova, P.A., Surovikin, Y.V., Shlyapin, D.A. // Diam Relat Mater. 2020. V. 108. 107986. https://doi.org/10.1016/j.diamond.2020.107986
13. Iost K.N., Temerev V.L., Smirnova N.S., Shlyapin D.A., Borisov V.A., Muromtsev I.V., Trenikhin M.V., Kireeva T.V., Shilova A.V., Tsyrul’nikov P.G. // Russ J Appl Chem. 2017. V. 90. P. 887—894. https://doi.org/10.1134/S1070427217060088
14. Yermakov YI, Surovikin VF, Plaksin G V, Semikolenov V.A., Likholobov V.A., Chuvilin L.V., Bogdanov S.V. // React Kinet Catal Lett. 1987. V. 33. P. 435—440. https://doi.org/10.1007/BF02128102
15. Shelepova E.V., Vedyagin A.A., Ilina L.Y., Nizovskii A.I., Tsyrulnikov P.G. // Appl Surf Sci. 2017. V. 409. P. 291—295. https://doi.org/10.1016/j.apsusc.2017.02.220
16. Iost K.N., Borisov V.A., Temerev V.L., Surovikin Y.V., Pavluchenko P.E., Trenikhin M.V., Arbuzov A.B., Shlyapin D.A., Tsyrulnikov P.G., Vedyagin A.A. // Int J Hydrogen Energy. 2018. V. 43. P. 17656—17663. https://doi.org/10.1016/J.IJHYDENE.2018.07.182
17. Iost K.N., Borisov V.A., Temerev V.L., Surovikin Y.V., Pavluchenko P.E., Trenikhin M.V., Arbuzov A.B., Shlyapin D.A., Tsyrulnikov P.G., Vedyagin A.A. // Reaction Kinetics, Mechanisms and Catalysis. 2019. V. 127. N 1. P. 103—115. DOI: 10.1007/s11144-019-01554-4.
18. Ferrari A.C. // Solid State Commun. 2007. V. 143. P. 47—57. https://doi.org/10.1016/J.SSC.2007.03.052
19. Joni I.M., Vanitha M., Camellia P., Balasubramanian N. // Diam Relat Mater. 2018. V. 88. P. 129—136. https://doi.org/10.1016/j.diamond.2018.07.009
20. Pinchuk O.A., Aubuchon S.R., Marks C., Dominey R., Dundar F., Deniz O.F., Ata A., Wynne K.J. // Fuel Cells. 2009. V. 5. P. 554. DOI: 10.1002/fuce.200800183.
21. Baturina O.A., Steven R.A., Kenneth J.W.// Chem. Mater. 2006. V. 18. P. 1498. DOI: 10.1021/cm052660e.
22. Starodub E., Bartelt N.C., McCarty K.F. // J Phys Chem C. 2010. V. 114. P. 5134—5140. https://doi.org/10.1021/jp912139e
23. Johánek V., Cushing G.W., Navin J.K., Harrison I. // Surf Sci. 2016. V. 644. P. 165—169. https://doi.org/10.1016/j.susc.2015.08.042
24. Baker R.T.K., France J.A., Rouse L., Waite R.J. // J Catal. 1976. V. 41. P. 22—29. https://doi.org/10.1016/0021-9517(76)90196-2
25. Gardini D., Christensen J. M., Damsgaard C. D., Jensen A. D., Jakob B. // Applied Catalysis B: Environmental. 2016. V. 183. P. 28. DOI: 10.1016/j.apcatb.2015.10.029.
26. Jang J.S., Lim S., Kim S.K., Peck D.H., Lee B., Yoon C.M., Jung D. // J Nanosci Nanotechnol. 2011. V. 11. No. 7. P. 5775. DOI: 10.1166/jnn.2011.4452.
27. Schaeffel F., Warner J.H., Bachmatiuk A., Rellinghaus B., Büchner B., Schultz L., Rümmeli M.H. // Phys. Status Solidi B. 2009. V. 246. No. 11. P. 2540 / DOI: 10.1002/pssb.200982293.
Review
For citations:
Borisov V.A., Iost K.N., Temerev V.L., Surovikin Yu.V., Osipov A.R., Trenikhin M.V., Smorokov A.A., Shlyapin D.A. The effect of Sibunit graphitization on the stability of Ru/(Pt, Pd)/Sibunit catalysts in an oxidizing atmosphere at elevated temperatures. Kataliz v promyshlennosti. 2021;1(1-2):55-61. (In Russ.) https://doi.org/10.18412/1816-0387-2021-1-2-55-61