Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

The effect of Sibunit graphitization on the stability of Ru/(Pt, Pd)/Sibunit catalysts in an oxidizing atmosphere at elevated temperatures

https://doi.org/10.18412/1816-0387-2021-1-2-55-61

Abstract

The effect of high-temperature treatment on the thermal stability of a graphitic carbon material Sibunit in an oxidizing medium was studied in dependence on the presence of active component – Pt, Pd or Ru. According to thermal analysis data, a high-temperature pretreatment of Sibunit increases the onset temperature of carbon oxidation. It was found that holding of the Ru/Sibunit samples for 4 h in a nitrogen: air (1 : 1) mixture at a temperature of 400 °С resulted in a partial destruction of the pyrocarbon matrix of Sibunit and increased the mean size of Ru particles. It was demonstrated that ruthenium catalysts can efficiently oxidize CO at a temperature not higher than 200 °С and withstand overheats up to 400 °С without a significant loss in activity.

About the Authors

V. A. Borisov
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


K. N. Iost
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


V. L. Temerev
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


Yu. V. Surovikin
Center of New Chemical Technologies BIC SB RAS, Omsk


A. R. Osipov
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


M. V. Trenikhin
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


A. A. Smorokov
National Research Tomsk State University, Tomsk
Russian Federation


D. A. Shlyapin
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


References

1. Cargnello M., Doan-Nguyen V.V.T., Gordon T.R., Diaz R.E., Stach E.A., Gorte R.J., Fornasiero P., Murray C.B. // Science. 2013. V. 341. P. 771—773. https://doi.org/10.1126/science.1240148

2. Ivanova A.S., Slavinskaya E.M., Gulyaev R.V., Zaikovskii V.I., Stonkus О.А., Danilova I.G., Plyasova L.M., Polukhina I.A., Boronin A.I. // Appl Catal B Environ. 2010. V. 97. P. 57—71. https://doi.org/https://doi.org/10.1016/j.apcatb.2010.03.024

3. Iost K.N., Borisov V.A., Temerev V.L., Surovikin Y.V., Pavluchenko P.E., Trenikhin M.V., Lupanova A.A., Arbuzov A.B., Shlyapin D.A., Tsyrulnikov P.G., Vedyagin A.A. // Surfaces and Interfaces. 2018. V. 12. P. 95—101. DOI: 10.1016/j.surfin.2018.05.003.

4. Alikin E.A., Vedyagin A.A. // Top Catal. 2016. V. 59. P. 1033—1038. https://doi.org/10.1007/s11244-016-0585-z

5. Batygina M.V., Dobrynkin N.M., Noskov A.S. // Adv Environ Res. 2000. V. 4. P. 123—132. https://doi.org/https://doi.org/10.1016/S1093-0191(00)00014-9

6. Dobrynkin NM, Batygina M V, Noskov AS, Tsyrulnikov P.G., Shlyapin D.A., Schegolev V.V., Astrova D.A., Laskin B.M. // Top Catal. 2005. V. 33. P. 69—76. https://doi.org/10.1007/s11244-005-2507-3

7. Booth TJ, Pizzocchero F, Andersen H, Hansen T.W., Wagner

8. J.B., Jinschek J.R., Dunin-Borkowski R.E., Hansen O., Bøggild P. // Nano Lett. 2011. V. 11. P. 2689—2692. https://doi.org/10.1021/nl200928k

9. Lobo L.S., Carabineiro S.A.C. // Fuel. 2016. V. 183. P. 457—469. https://doi.org/10.1016/J.FUEL.2016.06.115

10. Pizzocchero F., Vanin M., Kling J., Hansen T.W., Jacobsen K.W., Boggild P. // J. Phys. Chem. 2014. V. 118. P. 4296. DOI: 10.1021/jp500800n.

11. Borisov V.A., Iost K.N., Temerev V.L., Simonova A.D., Belopukhov E.A., Sigaeva S.S., Smorokov A.A., Trenikhin M.V., Savel’eva G.G., Muromtsev I.V., Osipov A.R., Shlyapin D.A. // Solid Fuel Chem. 2020. V. 54. P. 385—391. https://doi.org/10.3103/S0361521920060026

12. Borisov, V.A., Iost, K.N., Temerev, V.L., Fedotova, P.A., Surovikin, Y.V., Shlyapin, D.A. // Diam Relat Mater. 2020. V. 108. 107986. https://doi.org/10.1016/j.diamond.2020.107986

13. Iost K.N., Temerev V.L., Smirnova N.S., Shlyapin D.A., Borisov V.A., Muromtsev I.V., Trenikhin M.V., Kireeva T.V., Shilova A.V., Tsyrul’nikov P.G. // Russ J Appl Chem. 2017. V. 90. P. 887—894. https://doi.org/10.1134/S1070427217060088

14. Yermakov YI, Surovikin VF, Plaksin G V, Semikolenov V.A., Likholobov V.A., Chuvilin L.V., Bogdanov S.V. // React Kinet Catal Lett. 1987. V. 33. P. 435—440. https://doi.org/10.1007/BF02128102

15. Shelepova E.V., Vedyagin A.A., Ilina L.Y., Nizovskii A.I., Tsyrulnikov P.G. // Appl Surf Sci. 2017. V. 409. P. 291—295. https://doi.org/10.1016/j.apsusc.2017.02.220

16. Iost K.N., Borisov V.A., Temerev V.L., Surovikin Y.V., Pavluchenko P.E., Trenikhin M.V., Arbuzov A.B., Shlyapin D.A., Tsyrulnikov P.G., Vedyagin A.A. // Int J Hydrogen Energy. 2018. V. 43. P. 17656—17663. https://doi.org/10.1016/J.IJHYDENE.2018.07.182

17. Iost K.N., Borisov V.A., Temerev V.L., Surovikin Y.V., Pavluchenko P.E., Trenikhin M.V., Arbuzov A.B., Shlyapin D.A., Tsyrulnikov P.G., Vedyagin A.A. // Reaction Kinetics, Mechanisms and Catalysis. 2019. V. 127. N 1. P. 103—115. DOI: 10.1007/s11144-019-01554-4.

18. Ferrari A.C. // Solid State Commun. 2007. V. 143. P. 47—57. https://doi.org/10.1016/J.SSC.2007.03.052

19. Joni I.M., Vanitha M., Camellia P., Balasubramanian N. // Diam Relat Mater. 2018. V. 88. P. 129—136. https://doi.org/10.1016/j.diamond.2018.07.009

20. Pinchuk O.A., Aubuchon S.R., Marks C., Dominey R., Dundar F., Deniz O.F., Ata A., Wynne K.J. // Fuel Cells. 2009. V. 5. P. 554. DOI: 10.1002/fuce.200800183.

21. Baturina O.A., Steven R.A., Kenneth J.W.// Chem. Mater. 2006. V. 18. P. 1498. DOI: 10.1021/cm052660e.

22. Starodub E., Bartelt N.C., McCarty K.F. // J Phys Chem C. 2010. V. 114. P. 5134—5140. https://doi.org/10.1021/jp912139e

23. Johánek V., Cushing G.W., Navin J.K., Harrison I. // Surf Sci. 2016. V. 644. P. 165—169. https://doi.org/10.1016/j.susc.2015.08.042

24. Baker R.T.K., France J.A., Rouse L., Waite R.J. // J Catal. 1976. V. 41. P. 22—29. https://doi.org/10.1016/0021-9517(76)90196-2

25. Gardini D., Christensen J. M., Damsgaard C. D., Jensen A. D., Jakob B. // Applied Catalysis B: Environmental. 2016. V. 183. P. 28. DOI: 10.1016/j.apcatb.2015.10.029.

26. Jang J.S., Lim S., Kim S.K., Peck D.H., Lee B., Yoon C.M., Jung D. // J Nanosci Nanotechnol. 2011. V. 11. No. 7. P. 5775. DOI: 10.1166/jnn.2011.4452.

27. Schaeffel F., Warner J.H., Bachmatiuk A., Rellinghaus B., Büchner B., Schultz L., Rümmeli M.H. // Phys. Status Solidi B. 2009. V. 246. No. 11. P. 2540 / DOI: 10.1002/pssb.200982293.


Review

For citations:


Borisov V.A., Iost K.N., Temerev V.L., Surovikin Yu.V., Osipov A.R., Trenikhin M.V., Smorokov A.A., Shlyapin D.A. The effect of Sibunit graphitization on the stability of Ru/(Pt, Pd)/Sibunit catalysts in an oxidizing atmosphere at elevated temperatures. Kataliz v promyshlennosti. 2021;1(1-2):55-61. (In Russ.) https://doi.org/10.18412/1816-0387-2021-1-2-55-61

Views: 404


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)