

Modeling of the nitrous oxide synthesis in a microchannel reactor: the effect of parameters on the temperature regimes and output
https://doi.org/10.18412/1816-0387-2021-1-2-74-85
Abstract
The study deals with the synthesis of nitrous oxide via selective oxidation of ammonia in a microreactor (MCR), which is a metal disk with cylindrical channels filled with the manganese-bismuth oxide catalyst. The proposed 3D mathematical model of MCR takes into account axial and radial heat and mass transfer, catalytic reactions and related changes of the reaction mixture volume, heat exchange between the disk and channels, and thermal conductivity of the disk. Parameters providing the maximum output of nitrous oxide were determined with allowance for restrictions on the temperature in MCR channels. The highest efficiency of the nitrous oxide synthesis is achieved at a temperature of the outer edge of reactor 370 °С and an inlet concentration of ammonia 20 vol.%. The output per unit catalyst volume in MCR is approximately 1.5 times higher as compared to a tubular reactor; the maximum temperature corresponds to the optimal one, which provides the best selectivity of the process with respect to nitrous oxide.
About the Authors
A. S. IgnatovRussian Federation
N. V. Vernikovskaya
Russian Federation
V. A. Chumachenko
Russian Federation
A. S. Noskov
Russian Federation
References
1. Sobolev V.I., Kharitonov A.S., Paukshtis Ye.A., Panov G.I. // J. Mol. Catal. 1993. V. 84. P. 117—124. https://doi.org/10.1016/0304-5102(93)80090-H
2. Ильченко Н.И. Каталитическое окисление аммиака // Успехи химии. 1976. Т. 79. Вып. 12. C. 2169—2195. https://doi.org/10.1070/RC1976v045n12ABEH002765
3. Japanese Patent 6-122505, 1994; 6-122506, 1994; 6-122507, 1994.
4. Ivanova A.S., Slavinskaya E.M., Mokrinskii V.V., Polukhina I.A., Tsybulya S.V., Prosvirin I.P., Bukhtiyarov V.I., Rogov V.A., Zaikovskii V.I., Noskov A.S. // J. Catal. 2004. V. 221. № 1. P. 213—224. https://doi.org/10.1016/j.jcat.2003.06.001
5. Иванова А.С., Славинская Е.М., Полухина И.А., Носков А.С., Мокринский В.В., Золотарский И.А. Катализатор и способ получения закиси азота. Патент РФ 2185237; опубл. 2002.
6. Uriarte A.K., Rodkin M.A., Gross M.J., Kharitonov A.S., Panov G.I. in: R.K. Grasselli, S.T. Oyama, A.M. Gaffney, J.E. Lyons (Eds.), Proceedings of the 3rd International Congress on Oxidation Catalysis, Elsevier, Amsterdam, Stud. Surf. Sci. Catal. 1997. V. 110. P. 857—864.
7. Panov G.I., Uriarte A.K., Rodkin M.A., Sobolev V.I. // Catal. Today. 1998. V. 41. P. 365—385.
8. Noskov A.S., Zolotarsky I.A., Pokrovskaya S.A., Kashkin V.N., Slavinskaya E.M., Mokrinskii V.V., Korotkih V.N. // Chem. Eng. J. 2005. V. 107. P. 79—87. https://dx.doi.org/10.1016/j.cej.2004.12.013
9. Noskov A.S., Zolotarsky I.A., Pokrovskaya S.A., Korotkih V.N., Slavinskaya E.M., Mokrinskii V.V., Kashkin V.N. // Chem. Eng. J. 2003. V. 91. P. 235—242. https://doi.org/10.1016/S1385-8947(02)00159-6
10. Кагырманова А.П. Оптимизация формы и размеров зерна катализатора в трубчатых реакторах с неподвижным зернистым слоем: Дис. … канд. техн. наук: 02.00.15. Новосибирск. 2009. 149 с.
11. Ehrfeld W., Hessel V., Löwe H. Microreactors — New Technology for Modern Chemistry, Weinheim: Wiley—VCH, 2000, https://doi.org/10.1002/3527601953
12. Hessel V., Hardt S., Löwe H. Chemical Micro Process Engineering — Fundamentals Modelling and Reactions, Wiley—VCH, Weinheim, 2004, https://doi.org/10.1002/3527603042
13. V. Hessel, H. Löwe, A. Müller, G. Kolb, Chemical Micro Process Engineering — Processing and Plants, Wiley—VCH, Weinheim, 2005, https://doi.org/10.1002/3527603581
14. Gribovskii A.G., Ovchinnikova E.V., Vernikovskaya N.V., Andreev D.V., Chumachenko V.A., Makarshin L.L. // Chem. Eng. J. 2017. V. 308. P. 135—141. http://dx.doi.org/10.1016/j.cej.2016.09.058
15. Игнатов А.С., Корчемкина П.Г., Верниковская Н.В., Чумаченко В.А. Процесс окисления метанола в формальдегид в микроканальном реакторе щелевого типа // Наука. Промышленность. Оборона: Труды 20-й Всероссийской научно-технической конференции, Новосибирск, 17—19 апреля 2019 г. В 4 т. Новосибирск: Изд-во НГТУ. 2019. Т. 3. С. 238—242.
16. Rebrov E.V., de Croon M.H.J.M., Schouten J.C. // Catal. Today. 2001. V. 69. P. 183—192. https://doi.org/10.1016/S0920-5861(01)00368-6
17. Slavinskaya E.M., Veniaminov S.A., Notté P., Ivanova A.S, Boronin A.I., Chesalov Yu.A., Polukhina I.A., Noskov A.S. // Journal of Catalysis. 2004. V. 222. P. 129—142. https://doi.org/10.1016/j.jcat.2003.09.029
18. Il’chenko N.I., Golodets G.I. Catalytic Oxidation of Ammonia // J. Catal. 1975. V. 39. 57—86. https://doi.org/10.1016/0021-9517(75)90283-3
19. Vernikovskaya N.V., Ovchinnikova E.V., Chumachenko V.A., Gribovskii A.G., Makarshin L.L. Mathematical modeling of highly exothermal processes in micro-channel reactors [Electronic resource] // 23 International conference on chemical reactors (CHEMREACTOR—23): Abstr., Belgium, Ghent, 5—9 Nov. 2018.
20. Ovchinnikova E.V., Vernikovskaya N.V., Gribovskii A.G., Chumachenko V.A. Multichannel microreactors for highly exothermic catalytic process: the influence of thermal conductivity of reactor material and of transport phenomena inside the channels on the process efficiency // Chemical Engineering Journal 409 (2021) 128046. https://doi.org/10.1016/j.cej.2020.128046
21. Аэров М.Э., Тодес О.М., Наринский Д.А. Аппараты со стационарным зернистым слоем. Л.: Химия, 1979. 176 с.
22. Hardt S. // Edited by Frerich J. Keil, Wiley-VCH, 2007. P. 25—75.
Review
For citations:
Ignatov A.S., Vernikovskaya N.V., Chumachenko V.A., Noskov A.S. Modeling of the nitrous oxide synthesis in a microchannel reactor: the effect of parameters on the temperature regimes and output. Kataliz v promyshlennosti. 2021;1(1-2):74-85. (In Russ.) https://doi.org/10.18412/1816-0387-2021-1-2-74-85