Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

γ-Valerolactone as a promising solvent and basic chemical product. Catalytic synthesis from components of vegetable biomass

https://doi.org/10.18412/1816-0387-2021-1-2-97-116

Abstract

γ-Valerolactone (GVL), which is a valuable chemical compound and a platform molecule, is considered as an intermediate product for the synthesis of chemical compounds with high added value, components of motor fuels and biopolymers. GVL is successfully used as an environmentally friendly solvent, fuel additive, fragrance and food additive. This review summarizes recent advances in the development of catalytic methods for the production of GVL from levulinic acid (LA), alkyl levulinates (AL), carbohydrates and vegetable polymers. Particular attention is paid to heterogeneous catalysts based on metals and metal oxides, which are more promising for practical application. The proposed mechanisms of processes are considered in detail, and prospects of using hydrogen-donor solvents in the production of GVL are discussed. Catalysts with the best catalytic performance were compared in terms of their productivity, which is an important parameter for industrial catalysis.

About the Authors

O. P. Taran
Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk; Siberian Federal University, Krasnoyarsk
Russian Federation


V. V. Sychev
Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk
Russian Federation


B. N. Kuznetsov
Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk; Siberian Federal University, Krasnoyarsk
Russian Federation


References

1. Choi Y. J.,Lee S. Y. // Nature. 2013. Vol. 502. № 7472. P. 571-574.

2. Jakob M., Hilaire J. // Nature. 2015. Vol. 517. № 7533. P. 150-152.

3. Reche M.T., Osatiashtiani A., Durndell L.J. et al. // Catalysis Science & Technology. 2016. Vol. 6. № 19. P. 7334-7341.

4. Zhang Z., Deng K. // ACS Catalysis. 2015. Vol. 5. № 11. P. 6529-6544.

5. Huber G.W., Iborra S., Corma A. // Chemical Reviews. 2006. Vol. 106. № 9. P. 4044-4098.

6. Kamm B. // Angew Chem Int Ed Engl. 2007. Vol. 46. № 27. P. 5056-5058.

7. Weingarten R., Tompsett G.A., Conner W.C. et al. // Journal of Catalysis. 2011. Vol. 279. № 1. P. 174-182.

8. Tuck C.O., Perez E., Horvath I.T. et al. // Science. 2012. Vol. 337. № 6095. P. 695-699.

9. Werpy T., Petersen G., Aden A. et al. // US Department of Energy. 2004. P. 76.

10. Upare P.P., Lee J.M., Hwang Y.K. et al. // ChemSusChem. 2011. Vol. 4. № 12. P. 1749-1752.

11. Luska K.L., Migowski P., Leitner W. // Green Chemistry. 2015. Vol. 17. № 6. P. 3195-3206.

12. Zhang Z., Zhen J., Liu B. et al. // Green Chemistry. 2015. Vol. 17. № 2. P. 1308-1317.

13. Venderbosch R.H. // ChemSusChem. 2018. Vol. 8. № 8. P. 1306-1316.

14. Dawes G.J.S., Scott E.L., Le Nôtre J.R. et al. // Green Chemistry. 2015. Vol. 17. № 6. P. 3231-3250.

15. Bohre A., Dutta S., Saha B. et al. // ACS Sustainable Chemistry & Engineering. 2015. Vol. 3. № 7. P. 1263-1277.

16. Liguori F., Moreno-Marrodan C., Barbaro P. // ACS Catalysis. 2015. Vol. 5. № 3. P. 1882-1894.

17. Alonso D.M., Wettstein S.G., Dumesic J.A. // Green Chemistry. 2013. Vol. 15. № 3. P. 584-595.

18. Mehdi H., Fábos V., Tuba R. et al. // Topics in Catalysis. 2008. Vol. 48. № 1. P. 49-54.

19. Weingarten R., Conner W.C., Huber G.W. // Energy & Environmental Science. 2012. Vol. 5. № 6. P. 7559-7574.

20. Horvath I.T., Mehdi H., Fabos V. et al. // Green Chemistry. 2008. Vol. 10. № 2. P. 238-242.

21. Tukacs J.M., Fridrich B., Dibo G. et al. // Green Chemistry. 2015. Vol. 17. № 12. P. 5189-5195.

22. Osatiashtiani A., Lee A.F., Wilson K. // Journal of Chemical Technology & Biotechnology. 2017. Vol. 92. № 6. P. 1125-1135.

23. Van de Vyver S., Thomas J., Geboers J. et al. // Energy & Environmental Science. 2011. Vol. 4. № 9. P. 3601-3610.

24. Girisuta B., Janssen L.P. B.M., Heeres H.J. // Chemical Engineering Research and Design. 2006. Vol. 84. № 5. P. 339-349.

25. Lange J.P., van der Heide E., van Buijtenen J. et al. // ChemSusChem. 2012. Vol. 5. № 1. P. 150-166.

26. Gonzalez Maldonado G.M., Assary R.S., Dumesic J. et al. // Energy & Environmental Science. 2012. Vol. 5. № 5. P. 6981-6989.

27. Ismalaj E., Strappaveccia G., Ballerini E. et al. // ACS Sustainable Chem. Eng. 2014. Vol. 2. № 10. P. 2461-2464.

28. Meng X., Bhagia S., Wang Y. et al. // Industrial Crops and Products. 2020. Vol. 146. № P. 112144.

29. Wu P., Li L., Sun Y. et al. // Bioresource Technology. 2020. Vol. 305. № P. 123040.

30. Granados M.L., Alba-Rubio A.C., Sádaba I. et al. // Green Chemistry. 2011. Vol. 13. № 11. P. 3203-3212.

31. Xing R., Qi W., Huber G.W. // Energy & Environmental Science. 2011. Vol. 4. № 6. P. 2193-2205.

32. Weingarten R., Cho J., Conner J.W.C. et al. // Green Chemistry. 2010. Vol. 12. № 8. P. 1423-1429.

33. Chheda J.N., Roman-Leshkov Y., Dumesic J.A. // Green Chemistry. 2007. Vol. 9. № 4. P. 342-350.

34. Sen S.M., Alonso D.M., Wettstein S.G. et al. // Energy& Environmental Science. 2012. Vol. 5. № 12. P. 9690-9697.

35. Gürbüz E.I., Gallo J.M.R., Alonso D.M. et al. // Angewandte Chemie International Edition. 2012. Vol. 52. № 4. P. 1270-1274.

36. Dutta S., Yu I.K.M., Tsang D.C.W. et al. // Bioresource Technology. 2020. Vol. 298. P. 122544.

37. Guan C.-Y., Chen S.S., Lee T.-H. et al. // Journal of Cleaner Production. 2020. Vol. 260. P. 121097.

38. Alonso D.M., Bond J.Q., Serrano-Ruiz J.C. et al. // Green Chemistry. 2010. Vol. 12. № 6. P. 992-999.

39. Pham H.N., Pagan-Torres Y.J., Serrano-Ruiz J.C. et al. // Applied Catalysis A: General. 2011. Vol. 397. № 1. P. 153-162.

40. Serrano-Ruiz J.C., Wang D., Dumesic J.A. // Green Chemistry. 2010. Vol. 12. № 4. P. 574-577.

41. Bond J.Q., Wang D., Alonso D.M. et al. // Journal of Catalysis. 2011. Vol. 281. № 2. P. 290-299.

42. Bond J.Q., Alonso D.M., Wang D. et al. // Science. 2010. Vol. 327. № 5969. P. 1110-1114.

43. Zhao Y., Fu Y.,Guo Q.X. // Bioresour Technol. 2012. Vol. 114. P. 740-744.

44. Song Y., Zhu X., Song Y. et al. // Applied Catalysis A: General. 2006. Vol. 302. № 1. P. 69-77.

45. Xiong H., Pham H.N., Datye A.K. // Journal of Catalysis. 2013. Vol. 302. P. 93-100.

46. Corbel-Demailly L., Ly B.-K., Minh D.-P. et al. // ChemSus- Chem. 2018. Vol. 6. № 12. P. 2388-2395.

47. Li M., Li G., Li N. et al. // Chemical Communications. 2014. Vol. 50. № 12. P. 1414-1416.

48. Chalid M. // PhD dissertation of. University of Groningen. 2012. P. 109.

49. Bond J.Q., Martin Alonso D., West R.M. et al. // Langmuir. 2010. Vol. 26. № 21. P. 16291-16298.

50. Oser B.L., Carson S., Oser M. // Food and Cosmetics Toxicology. 1965. Vol. 3. P. 563-569.

51. Marinetti L.J., Leavell B.J., Jones C.M. et al. // Pharmacology, biochemistry, and behavior. 2012. Vol. 101. № 4. P. 602-608.

52. Yan K., Liao J., Wu X. et al. // RSC Advances. 2013. Vol. 3. № 12. P. 3853-3856.

53. Braden D.J., Henao C.A., Heltzel J. et al. // Green Chemistry. 2011. Vol. 13. № 7. P. 1755-1765.

54. Ortiz-Cervantes C., Flores-Alamo M.,García J.J. // ACS Catalysis. 2015. Vol. 5. № 3. P. 1424-1431.

55. Fábos V., Mika L.T., Horváth I.T. // Organometallics. 2014. Vol. 33. № 1. P. 181-187.

56. Zhang L., Mao J., Li S. et al. // Applied Catalysis B: Environmental. 2018. Vol. 232. P. 1-10.

57. Lomate S., Sultana A., Fujitani T. // Catalysis Letters. 2018. Vol. 148. № 1. P. 348-358.

58. Deng L., Zhao Y., Li J. et al. // ChemSusChem. 2010. Vol. 3. № 10. P. 1172-1175.

59. Deng L., Li J., Lai D.M. et al. // Angew Chem Int Ed Engl. 2009. Vol. 48. № 35. P. 6529-6532.

60. Yuan J., Li S.S., Yu L. et al. // Energy and Environmental Science. 2013. Vol. 6. № 11. P. 3308-3313.

61. Heeres H., Handana R., Chunai D. et al. // Green Chemistry. 2009. Vol. 11. № 8. P. 1247-1255.

62. Kopetzki D., Antonietti M. // Green Chemistry. 2010. Vol. 12. № 4. P. 656-660.

63. Chia M., Dumesic J.A. // Chemical Communications. 2011. Vol. 47. № 44. P. 12233-12235.

64. Hengne A.M., Rode C.V. // Green Chemistry. 2012. Vol. 14. № 4. P. 1064-1072.

65. Yan K., Yang Y., Chai J. et al. // Applied Catalysis B: Environmental. 2015. Vol. 179. № P. 292-304.

66. Cai B., Zhou X.-C., Miao Y.-C. et al. // ACS Sustainable Chemistry & Engineering. 2017. Vol. 5. № 2. P. 1322-1331.

67. Gupta S.S.R., Kantam M.L. // Catalysis Today. 2018. Vol. 309. № P. 189-194.

68. Chuah G.K., Jaenicke S., Zhu Y.Z. et al. // Current Organic Chemistry. 2006. Vol. 10. № 13. P. 1639-1654.

69. Rao R.S., Walters A.B., Vannice M.A. // The Journal of Physical Chemistry B. 2005. Vol. 109. № 6. P. 2086-2092.

70. Yurieva T.M. // Catalysis Today. 1999. Vol. 51. № 3. P. 457-467.

71. Lemcoff N.O. // Journal of Catalysis. 1977. Vol. 46. № 3. P. 356-364.

72. Fouilloux P. // Applied Catalysis. 1983. Vol. 8. № 1. P. 1-42.

73. Chang N.-S., Aldrett S., Holtzapple M.T. et al. // Chemical Engineering Science. 2000. Vol. 55. № 23. P. 5721-5732.

74. Wright W.R., Palkovits R. // ChemSusChem. 2012. Vol. 5. № 9. P. 1657-1667.

75. Kuwahara Y., Kango H., Yamashita H. // ACS Sustainable Chemistry & Engineering. 2016. Vol. 5. № 1. P. 1141-1152.

76. He J., Li H., Liu Y. et al. // Journal of Industrial and Engineering Chemistry. 2016. Vol. 43. P. 133-141.

77. Wettstein S.G., Alonso D.M., Chong Y. et al. // Energy& Environmental Science. 2012. Vol. 5. № 8. P. 8199-8203.

78. Qi L.,Horvath I.T. // ACS Catalysis. 2012. Vol. 2. № 11. P. 2247-2249.

79. Morrison R.T., Boyd R.N. // 1983. Vol. 20. P. 813-885.

80. Serrano-Ruiz J.C., West R.M., Dumesic J.A. // Annu Rev Chem Biomol Eng. 2010. Vol. 1. P. 79-100.

81. Galletti A.M.R., Antonetti C., De Luise V. et al. // Green Chemistry. 2012. Vol. 14. № 3. P. 688-694.

82. Starodubtseva E.V., Turova O.V., Vinogradov M.G. et al. // Russian Chemical Bulletin. 2005. Vol. 54. № 10. P. 2374-2378.

83. Gurbuz E.I., Alonso D.M., Bond J.Q. et al. // ChemSusChem. 2018. Vol. 4. № 3. P. 357-361.

84. Zhou Y., Woo L.K., Angelici R.J. // Applied Catalysis A: General. 2007. Vol. 333. № 2. P. 238-244.

85. Akula S., Kumar P.P., Prasad R.B.N. et al. // Tetrahedron Letters. 2012. Vol. 53. № 27. P. 3471-3473.

86. Fabos V., Mika L., Horvath I.T. // Organometal. 2014. Vol. 33. № P. 181—187.

87. Geilen F.M.A., Engendahl B., Holscher M. et al. // Journal of the American Chemical Society. 2011. Vol. 133. № 36. P. 14349-14358.

88. Phanopoulos A., White A.J.P., Long N.J. et al. // ACS Catalysis. 2015. Vol. 5. № 4. P. 2500-2512.

89. Vom Stein T., Meuresch M., Limper D. et al. // J Am Chem Soc. 2014. Vol. 136. № 38. P. 13217-13225.

90. Brewster T.P., Miller A.J., Heinekey D.M. et al. // J Am Chem Soc. 2013. Vol. 135. № 43. P. 16022-16025.

91. Tukacs J.M., Novak M., Dibo G. et al. // Catalysis Science & Technology. 2014. Vol. 4. № 9. P. 2908-2912.

92. Omoruyi U., Page S., Hallett J. et al. // ChemSusChem. 2016. Vol. 9. № 16. P. 2037-2047.

93. Fu M.-C., Shang R., Huang Z. et al. // Synlett. 2014. Vol. 25. № 19. P. 2748-2752.

94. Dai N., Shang R., Fu M. et al. // Chinese Journal of Chemistry. 2018. Vol. 33. № 4. P. 393-393.

95. Metzker G., Burtoloso A.C.B. // Chemical Communications. 2015. Vol. 51. № 75. P. 14199-14202.

96. Gupta S.S., Lakshmi Kantam M. // Catalysis Today. 2017. Vol. 309. P. 189-194.

97. Jiang K., Sheng D., Zhang Z. et al. // Catalysis Today. 2016. Vol. 274. P. 55-59.

98. Kumar V.V., Naresh G., Sudhakar M. et al. // Applied Catalysis A: General. 2015. Vol. 505. № P. 217-223.

99. Gundekari S., Srinivasan K. // Catalysis Communications. 2017. Vol. 102.P. 40-43.

100. Song S., Yao S., Cao J. et al. // Applied Catalysis B: Environmental. 2018. Vol. 217. № P. 115-124.

101. Peng L., Lin L., Zhang J. et al. // Applied Catalysis A-general. 2011. Vol. 397. № 1-2. P. 259-265.

102. Windom B.C., Lovestead T.M., Mascal M. et al. // Energy & Fuels. 2011. Vol. 25. № 4. P. 1878-1890.

103. Kim B., Jeong J., Shin S. et al. // ChemSusChem. 2010. Vol. 3. № 11. P. 1273-1275.

104. Hu X., Li C.-Z. // Green Chemistry. 2011. Vol. 13. № 7. P. 1676-1679.

105. Démolis A., Essayem N., Rataboul F. // ACS Sustainable Chemistry & Engineering. 2014. Vol. 2. № 6. P. 1338-1352.

106. Manzer L.E. // Applied Catalysis A: General. 2004. Vol. 272. № 1. P. 249-256.

107. Yan Z.-p., Lin L., Liu S. // Energy & Fuels. 2009. Vol. 23. № 8. P. 3853-3858.

108. Al-Shaal M.G., Wright W.R. H., Palkovits R. // Green Chemistry. 2012. Vol. 14. № 5. P. 1260-1263.

109. Shindler Y., Matatov-Meytal Y., Sheintuch M. // Industrial & Engineering Chemistry Research. 2001. Vol. 40. № 15. P. 3301-3308.

110. Fajt V., Kurc L., Červený L. // International Journal of Chemical Kinetics. 2008. Vol. 40. № 5. P. 240-252.

111. Wainwright M.S., Ahn T., Trimm D.L. et al. // Journal of Chemical & Engineering Data. 1987. Vol. 32. № 1. P. 22-24.

112. Al-Shaal M.G., Calin M., Delidovich I. et al. // Catalysis Communications. 2015. Vol. 75. № P. 65-68.

113. Mori K., Kumami A., Tomonari M. et al. // The Journal of Physical Chemistry C. 2009. Vol. 113. № 39. P. 16850-16854.

114. Mori K., Tottori M., Watanabe K. et al. // The Journal of Physical Chemistry C. 2011. Vol. 115. № 43. P. 21358-21362.

115. Kuwahara Y., Magatani Y., Yamashita H. // Catalysis Today. 2015. Vol. 258. P. 262-269.

116. Li G., Yang H., Cheng M. et al. // Molecular Catalysis. 2018. Vol. 455. P. 95-102.

117. Sychev V., Baryshnikov S., Ivanov P. et al. // Journal of Siberian Federal University. Chemistry. 2021. Vol. 14. № 1. С. 1-16.

118. Feng J., Gu X., Xue Y. et al. // Science of the Total Environment. 2018. Vol. 633. № P. 426-432.

119. Lange J.P., Price R., Ayoub P.M. et al. // Angew Chem Int Ed Engl. 2010. Vol. 49. № 26. P. 4479-4483.

120. Raspolli Galletti A.M., Antonetti C., Ribechini E. et al. // Applied Energy. 2012. Vol. 102. № P. 157-162.

121. Luo W., Deka U., Beale A.M. et al. // Journal of Catalysis. 2013. Vol. 301. № P. 175-186.

122. Ding D., Wang J., Xi J. et al. // Green Chemistry. 2014. Vol. 16. № 8. P. 3846-3853.

123. Yan K., Lafleur T., Jarvis C. et al. // Journal of Cleaner Production. 2014. Vol. 72. № P. 230-232.

124. Yan K., Lafleur T., Wu G. et al. // Applied Catalysis A: General. 2013. Vol. 468. № P. 52-58.

125. Chan-Thaw C.E., Marelli M., Psaro R. et al. // RSC Advances. 2013. Vol. 3. № 5. P. 1302-1306.

126. Amarasekara A.S., Hasan M.A. // Catalysis Communications. 2015. Vol. 60. № P. 5-7.

127. Yang Z., Huang Y.B., Guo Q.X. et al. // Chem Commun (Camb). 2013. Vol. 49. № 46. P. 5328-5330.

128. Pinto B.P., Fortuna A.L., Cardoso C.P. et al. // Catalysts. 2018. Vol. P. 264-283.

129. Li C., Xu G., Zhai Y. et al. // Fuel. 2017. Vol. 203. P. 23-31.

130. Hengst K., Schubert M., Carvalho H.W.P. et al. // Applied Catalysis A: General. 2015. Vol. 502. № P. 18-26.

131. Sun M.Q., Xia J., Wang H.F. et al. // Applied Catalysis B: Environmental. 2018. Vol. 227. P. 488-498.

132. Gong W., Chen C., Fan R. et al. // Fuel. 2018. Vol. 231. P. 165-171.

133. Upare P.P., Jeong M.G., Hwang Y.K. et al. // Applied Catalysis A: General. 2015. Vol. 491. P. 127–135.

134. Tang X., Hu L., Sun Y. et al. // RSC Advances. 2013. Vol. 3. № 26. P. 10277-10284.

135. Tang X., Chen H., Hu L. et al. // Applied Catalysis B: Environmental. 2014. Vol. 147. P. 827-834.

136. Kuwahara Y., Kaburagi W., Osada Y. et al. // Catalysis Today. 2017. Vol. 281. P. 418-428.

137. He J., Li H., Lu Y.-M. et al. // Applied Catalysis A: General. 2015. Vol. 510. P. 11-19.

138. Xiao Z., Zhou H., Hao J. et al. // Fuel. 2016. Vol. 193. P. 322-330.

139. Li H., Fang Z.,Yang S. // ACS Sustainable Chemistry & Engineering. 2015. Vol. 4. № 1. P. 236-246.

140. Xie Y., Li F., Wang J. et al. // Molecular Catalysis. 2017. Vol. 442. P. 107-114.

141. Morales G., Melero J.A., Iglesias J. et al. // Reaction Chemistry & Engineering. 2019. Vol. 4. № 10. P. 1834-1843.

142. Paniagua M., Morales G., Melero J.A. et al. // Catalysis Today. 2020. https://doi.org/10.1016/j.cattod.2020.04.025.

143. He J., Li H., Xu Y. et al. // Renewable Energy. 2020. Vol. 146. № P. 359-370.

144. Wu W., Li Y., Zhao W. et al. // Catalysts. 2018. Vol. 264. № 8.

145. Cai Z., Li W., Wang F. et al. // Journal of the Taiwan Institute of Chemical Engineers. 2018. Vol. 93 P. 374-378.

146. Kondeboina M., Enumula S.S., Gurram V.R.B. et al. // Journal of Industrial and Engineering Chemistry. 2018. Vol. 61. P. 227-235.

147. Son P.A., Nishimura S., Ebitani K. // RSC Advances. 2014. Vol. 4. № 21. P. 10525-10530.

148. Hussain S.K., Velisoju V.K., Rajan N.P. et al. // ChemistrySelect. 2018. Vol. 3. № 22. P. 6186-6194.

149. Hengne A.M., Malawadkar A.V., Biradar N.S. et al. // RSC Advances. 2014. Vol. 4. № 19. P. 9730-9736.


Review

For citations:


Taran O.P., Sychev V.V., Kuznetsov B.N. γ-Valerolactone as a promising solvent and basic chemical product. Catalytic synthesis from components of vegetable biomass. Kataliz v promyshlennosti. 2021;1(1-2):97-116. (In Russ.) https://doi.org/10.18412/1816-0387-2021-1-2-97-116

Views: 1210


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)