Preview

Катализ в промышленности

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Процессы переработки природных и попутных газов на основе газофазного окисления

https://doi.org/10.18412/1816-0387-2021-4-227-237

Полный текст:

Аннотация

Рассматривается возрастающее значение газохимии для мировой экономики и вызываемая этим необходимость создания новых, в том числе некаталитических, технологий конверсии природного газа и других углеводородных газов в химические продукты. Обсуждаются существующие и перспективные некаталитические процессы их конверсии в синтез-газ, а также прямые методы получения химических продуктов из основного компонента природного газа – метана.

Об авторах

В. С. Арутюнов
Федеральный исследовательский центр химической физики им. Н.Н. Семенова РАН (ФИЦ ХФ РАН), Москва; Институт проблем химической физики РАН (ИПХФ РАН), Черноголовка
Россия


В. И. Савченко
Институт проблем химической физики РАН (ИПХФ РАН), Черноголовка
Россия


И. В. Седов
Институт проблем химической физики РАН (ИПХФ РАН), Черноголовка
Россия


А. В. Никитин
Федеральный исследовательский центр химической физики им. Н.Н. Семенова РАН (ФИЦ ХФ РАН), Москва; Институт проблем химической физики РАН (ИПХФ РАН), Черноголовка
Россия


Список литературы

1. BP Energy Outlook 2035: February 2015. http://www.bp.com/energyoutlook (дата обращения 10.03.2021).

2. Парижское соглашение по климату, 2015

3. https://unfccc.int/files/meetings/paris_nov_2015/application/pdf/paris_agreement_russian_.pdf (дата обращения 02.05.2021)

4. Горшков В.Г. Физические и биологические основы устойчивой жизни. М.: Изд-во ВИНИТИ, 1995. 470 с.

5. Панцхава А.С. Биоэнергетика. Мир и Россия. Биогаз: Теория и практика. М.: Кнорус, 2014. 1440 с. ISBN: 978-5-4365-0155-0.

6. Википедия. Эффективность фотосинтеза.

7. https://ru.wikipedia.org/wiki/%D0%AD%D1%84%D1%84%D0%B5%D0%BA%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82%D1%8C_%D1%84%D0%BE%D1%82%D0%BE%D1%81%D0%B8%D0%BD%D1%82%D0%B5%D0%B7%D0%B0 (дата обращения 02.05.2021)

8. Hall D.O., Rao K. Photosynthesis. Cambridge University Press, 1999.

9. Speirs J., McGlade C., Slade R. Uncertainty in the availability of natural resources: Fossil fuels, critical metals and biomass. Energy Policy. 2015. 2015. V. 87. P. 654–664. http://dx.doi.org/10.1016/j.enpol.2015.02.031

10. Арутюнов В.С., Лисичкин Г.В. // Успехи химии. 2017. Т. 86. № 8. С. 777–804. http://iopscience.iop.org/article/10.1070/RCR4723/pdf

11. Ладыгина О. Темная сторона альтернативной энергетики. Discovery. 2021. No. 5 (140). C. 14–16.

12. Kvenvolden K.A. // Chemical Geology. 1988. V. 71. № 1 3. P. 41 51.

13. Aasberg-Petersen K., Dybkjær I., Ovesen C.V., Schjødt N.C., Sehested J., Thomsen S.G. // J. Nat. Gas Sci. Eng. 2011. V. 3. P. 423–459. http://dx.doi.org/10.1016/j.jngse.2011.03.004

14. Dybkjær I., Aasberg-Petersen K. J. Chem. Eng. 2016. V. 94. P. 607–612. DOI 10.1002/cjce.22453

15. Степанов А.А., Коробицына Л.Л., Восмериков А.В. // Катализ в промышленности. 2021. (В печати.)

16. Арутюнов В.С. Окислительная конверсия природного газа. М.: КРАСАНД, 2011. -640 с.

17. Арутюнов В.С., Крылов О.В. Органическая химия: Окислительные превращения метана. 2-е изд., испр. и доп. Учебное пособие для вузов. М.: Юрайт. 2018. -371 с.

18. Chen C.M., Bennett D.L., Carolan M.F., Foster E.P., Schinski W.L., Taylor D.M. ITM syngas ceramic membrane technology for synthesis gas production. In: Proceedings of the 7th Natural Gas Conversion Symposium, June 6-10, Dalian, China. Studies in Surface Science and Catalysis. Vol. 147. Natural Gas Conversion VII. X.Bao and Y.Xu (Editors). Elsevier. Amsterdam et al. 2004, P. 55.

19. Mazanec T., Perry S., Tonkovich L., Wang Y. Microchannel gas-to-liquids conversion – thinking big by thinking small. In: Proceedings of the 7th Natural Gas Conversion Symposium, June 6-10, Dalian, China. Studies in Surface Science and Catalysis. Vol. 147. Natural Gas Conversion VII. X.Bao and Y.Xu (Editors). Elsevier. Amsterdam et al. 2004. P. 169.

20. Schmidt L.D. Modeling millisecond reactors. In: Proceedings of the 6th Natural Gas Conversion Symposium. Girdwood, Alaska, 2001. Studies in Surface Science and Catalysis. V.136. 2001. Natural Gas Conversion VI. Ed. E.Iglesia, T.H.Fleish. Elsevier Science B.V. Amsterdam-London-New York-Oxford-Paris-Shannon-Tokyo. 2001.

21. Систер В.Г., Богданов В.А., Колбановский Ю.А. // Нефтехимия. 2005. Т. 45. № 6. С. 440–446.

22. http://energosintop.narod.ru/ (дата обращения 17.05.2021)

23. Загашвили Ю.В., Левихин А.А., Кузьмин А.М. // Нефтегазохимия. 2017. № 4. С. 9–16.

24. Rabovitser J., Wohadlo S., Pratapas J.M., Nester S., Tartan M., Palm S., Freedman S.I., White D. Experimental study of a 200 kw partial oxidation gas turbine (POGT) for co-production of power and hydrogen-enriched fuel gas. Proceedings of ASME Turbo Expo 2009: Power for Land, Sea and Air GT2009. June 8-12, 2009, Orlando, Florida, USA. GT2009-59272.

25. Dorofeenko S.O., Polianczyk E.V. Gasification of pulverized coal in a counterflow moving bed filtration combustion reactor: In search of the optimum. Fuel. 2021. V. 291. 120255. https://doi.org/10.1016/j.fuel.2021.120255

26. Arutyunov V.S., Shmelev V.M., Sinev M.Yu., Shapovalova O.V. 2011. Syngas and hydrogen production in a volumetric radiation burners. Chem. Eng. J. 176–177, 291–294.

27. https://doi.org/10.1016/j.cej.2011.03.084

28. Arutyunov V.S., Shmelev V.M., Rakhmetov A.N., Shapovalova O.V. 2014. 3D Matrix burners: a method for small-scale syngas production. Ind. Eng. Chem. Res. 53(5), 1754–1759. https://doi.org/10.1021/ie4022489

29. Nikitin A., Ozerskii A., Savchenko V., Sedov I., Shmelev V., Arutyunov V. 2019. Matrix conversion of natural gas to syngas: the main parameters of the process and possible applications. Chem. Eng. J. 377, 120883. https://doi.org/10.1016/j.cej.2019.01.162.

30. Arutyunov V., Nikitin A., Strekova L., Savchenko V., Sedov I. Renewable biogas as a source for small-scale production of liquid fuels. Catalysis Today. 2020. https://doi.org/10.1016/j.cattod.2020.06.057

31. Арутюнов В.С., Савченко В.И., Седов И.В. // НефтеГазоХимия. 2016. № 4. С. 12–21.

32. Арутюнов В.С., Стрекова Л.Н., Савченко В.И., Седов И.В., Никитин А.В., Елисеев О.Л., Крючков М.В., Лапидус А.Л. // Нефтехимия. 2019. Т. 59. № 3. С. 246–255. DOI: 10.1134/S002824211903002X.

33. Savchenko V.I., Zimin Ya.S., Nikitin A.V., Sedov I.V., Arutyunov V.S. Non-catalytic dry reforming of C1–C4 hydrocarbons at 1400-1800 K. // Journal of CO2 Utilization. 2021. https://doi.org/10.1016/j.jcou.2021.101490

34. Билера И.В., Буравцев Н.Н., Колбановский Ю.А., Россихин И.В. Получение ацетилена в процессах технологиче¬ского горения. В сб. Технологическое горение. под редакцией С.М. Алдошина и др. Москва: РАН, 2018. С. 62–95. DOI: 10.31857/S9785907036383000003.

35. Q. Zhang, Y. Liu, T. Chen, X. Yu, J. Wang, T. // Chem. Eng. Sci. 142 (2016) 126–136. https://doi.org/10.1016/j.ces.2015.11.010.

36. Q. Zhang, J. Wang, T. Wang // Ind. Eng. Chem. Res. 55 (2016) 8383–8394. https://doi.org/10.1021/acs.iecr.6b00817.

37. Q. Zhang, J. Wang, T. Wang // Ind. Eng. Chem. Res. 56 (2017) 5174–5184. https://doi.org/10.1021/acs.iecr.7b00406.

38. Q. Zhang, J. Luo, T. Chen, J. Wang, T. Wang // Chemical Engineering & Processing: Process Intensification. 122 (2017) 447–459. https://doi.org/10.1016/j.cep.2017.06.007.

39. J. Luo, J. Wang, T. Wang // J. Chem. Eng. 26 (2018) 1312–1320. https://doi.org/10.1016/j.cjche.2018.02.010.

40. T. Chen, Q. Zhang, J. Wang, T. Wang // Chem. Eng. J. 329 (2017) 238–249. https://doi.org/10.1016/j.cej.2017.04.016.

41. X. Yu, T. Chen, Q. Zhang, T. Wang // J. Chem. Eng. 26 (2018) 903–913. http://dx.doi.org/10.1016/j.cjche.2016.04.039.

42. J. Luo, J. Wang, T. Wang // Chemical Engineering & Processing: Process Intensification. 145 (2019). 107646. https://doi.org/10.1016/j.cep.2019.107646.

43. Hall K.R. // Catalysis Today. 2005. V. 106. P. 243–246.

44. Арутюнов В.С., Голубева И.А., Елисеев О.Л., Жагфаров Ф.Г. Технология переработки углеводородных газов. Учебник для вузов. М.: Юрайт, 2020. 723 с.

45. Amin A.M., Croiset E., Epling W. // Int. J. Hydrogen En. 2011. V. 36. P. 2904–2935. doi:10.1016/j.ijhydene.2010.11.035.

46. Ashik U.P.M., Wan Daud W.M.A., Hazzim A.F. Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane – A review. Renewable and Sustainable Energy Reviews. 2015. V. 44. P. 221–256. http://dx.doi.org/10.1016/j.rser.2014.12.025.

47. Дубинин А.М., Кагарманов Г.Р., Финк А.В. // Известия высших учебных заведений. Химия и химическая технология. 2009. Т. 52 (2). С. 54–56.

48. Арутюнов В.С., Басевич В.Я., Веденеев В.И., Крылов О.В. // Кинетика и катализ. 1999. Т. 40. № 3. С. 425–431. P. 382–387.

49. Arutyunov V.S. Direct Methane to Methanol: Foundations and Prospects of the Process. Amsterdam, The Netherlands. Elsevier B.V. 2014.

50. Arutyunov V. // Catalysis Today. 2013. V. 215. P. 243–250. http://dx.doi.org/10.1016/j.cattod.2012.12.021.

51. Савченко В.И., Озерский А.В., Фокин И.Г., Никитин А.В., Арутюнов В.С., Седов И.В. // Журнал прикладной химии. 2021. Т. 94. № 4. С. 516–524. DOI: 10.31857/S0044461821040113.


Для цитирования:


Арутюнов В.С., Савченко В.И., Седов И.В., Никитин А.В. Процессы переработки природных и попутных газов на основе газофазного окисления. Катализ в промышленности. 2021;21(4):227-237. https://doi.org/10.18412/1816-0387-2021-4-227-237

For citation:


Arutyunov V.S., Savchenko V.I., Sedov I.V., Nikitin A.V. Processing of natural and casing-head gases by the gas-phase oxidation. Kataliz v promyshlennosti. 2021;21(4):227-237. (In Russ.) https://doi.org/10.18412/1816-0387-2021-4-227-237

Просмотров: 53


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)