Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Modern trends in methanol processing

https://doi.org/10.18412/1816-0387-2021-4-247-258

Abstract

The review considers the modern structure of methanol production and consumption. The main processes of methanol conversion and the catalysts for their implementation are reported: the production of formaldehyde, hydrocarbons (МТН) and olefins (МТО) as well as the generation of hydrogen from methanol by steam conversion, partial oxidation, autothermal reforming and decomposition.

About the Authors

A. A. Khassin
Novosibirsk State University
Russian Federation


T. P. Minyukova
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


References

1. Methanol Institute website. Доступно в сети: https://www.methanol.org/applications/ - дата обращения - 25.05.2021.

2. Ernst & Young Group. Рынок метанола: текущая ситуация и перспективы. 10.2020. Доступно в сети: https://assets.ey.com/content/dam/ey-sites/ey-com/ru_ru/topics/industrial-products/ey-methanol-market-overview-october-2020-rus.pdf?download - дата обращения - 25.05.2021.

3. Шаповалова А. Краткий обзор российского рынка метанола по итогам 2019 года, 30.03.2020. Доступно в сети: https://www.refinitiv.ru/blog/market-insights/kratkij-obzor-rossijskogo-rynka-metanola-po-itogam-2019/#_ftn1 - дата обращения - 25.05.2021.

4. Roode-Gutzmer Q.I., Kaiser D., Bertau M. // ChemBioEng Rev 2019. V. 6 (6). P. 209–236. doi: 10.1002/cben.201900012.

5. Вяткин Ю.Л., Лищинер И.И., Синицын С.А., Кузьмин А.М. // Нефтегаз. 2020. Т. 4. С. 114–118.

6. Boulamanti A., Moya J.A. // Renewable and Sustainable Energy Reviews. 2017. V. 68. P. 1205–1212. dx.doi.org/10.1016/j.rser.2016.02.021.

7. Garside M. Production capacity of methanol worldwide from 2018 to 2030. Доступно в сети: https://www.statista.com/statistics/1065891/global-methanol-production-capacity/ - дата обращения - 25.05.2021.

8. Yarulina I., Chowdhury A.D., Meirer F., Weckhuysen B.M., Gascon J. // Nature Catalysis. 2018. V. 398. P. 398–411. doi.org/10.1038/s41929-018-0078-5.

9. Hindman M. (ExxonMobil Research and Engineering), MTG Technology. An Alternative to Liquid Fuel Production. World CTL Conference 2010, 13-16 April 2010, Beijin, China.

10. SINOPEC Engineering (group) Co., ltd. Voluntary announcement: Entering into a contract for Huizhou chemical complex project (phase I) with ExxonMobil, April, 12 2021. Доступно в сети: https://www1.hkexnews.hk/listedco/listconews/sehk/2021/0412/2021041200065.pdf - дата обращения - 25.05.2021.

11. Zhang L., Wang S., Shi D., Qin Z., Wang P., Wang G., Li J., Dong M., Fan W., Wang J. // Catal. Sci. Technol. 2020. V. 10. P. 1835-1847. doi: 10.1039/c9cy02419k.

12. Yang Z., Zhang L., Zhou Y., Wang H., Wen L., Kianfar E.. Methanol-to-olefin conversion over ZSM-5: influence of zeolite chemical composition and experimental conditions on propylene formation // Chem. Eng. Commun. 2020. doi.org/10.1080/00986445.2021.1884552.

13. Stepacheva A.A., Doluda V.Yu., Lakina N.V., Molchanov V.P., Sidorov A.I., Matveeva V.G., Sulman M.G., Sulman E.M.. // Reac. Kinet. Mech. Cat. 2018. V. 124. P. 807–822. https://doi.org/10.1007/s11144-018-1359-3.

14. Park S., Sato G., Osuga R., Wang Y., Kubota Y., Kondo J.N., Gies H., Tatsumi T., Yokoi T. // Chem. Ing. Tech. 2021. V. 93. No. 6. P. 1–12. doi: 10.1002/cite.202000174.

15. Pérez-Uriarte P., Ateka A., Gayubo A.G., Cordero-Lanzac T., Aguayo A.T., Bilbao J. // Chem. Eng. J. 2017. V. 311. P. 367-377. http://dx.doi.org/10.1016/j.cej.2016.11.104

16. Kianfar E., Hajimirzaee S., Mousaviand S., Mehr A.S. // Microchemical Journal. 2020. V. 156. P. 104822. https://doi.org/10.1016/j.microc.2020.104822.

17. Ali S.S., Zaidi H.A. // Energy Fuels. 2020. 34 (11). P. 13225–13246. https://doi.org/10.1021/acs.energyfuels.0c02373.

18. Rownaghi A.A., Hedlund J. // Ind. Eng. Chem. Res. 2011, 50, 11872–11878. dx.doi.org/10.1021/ie201549j.

19. Fathi S., Sohrabi M., Falamaki C. // Fuel. 2014. V. 116. P. 529–537. http://dx.doi.org/10.1016/j.fuel.2013.08.036.

20. Zaidi H.A., Pant K.K. // Canad. J. Chem. Eng. 2005. V. 83. P. 970-977.

21. Kianfar E. Salimi M., Pirouzfar V., Koohestani B. // Int J. Chem Reactor Eng. 2018. V. 16 (7). P. 1-7

22. Wan Z., Wu W., Chen W., Yang H., Zhang D. // Ind. Eng. Chem. Res. 2014. V. 53(50). P. 19471-19478. https://doi.org/10.1021/ie5036308

23. Di Z., Yang C., Jiao X., Li J., Wu J., Zhang D. A ZSM-5/MCM-48 based catalyst for methanol to gasoline conversion, Fuel 104 (2013) 878–881. http://dx.doi.org/10.1016/j.fuel.2012.09.079

24. Doluda V.Yu., Stepacheva A.A., Lakina N.V., Manaenkov O.V., Molchanov V.P., Demidenko G.N., Matveeva V.G., Panfilov V.I., Sulman M.G., Sulman E.M. // Int. J. Sust. Energy. 2018. V. 37 (10) P. 970–977. https://doi.org/10.1080/14786451.2017.1402770.

25. Burns K.M., Melnick R.L. // Int. J. Occupational Environm. Health. 2012. V. 18(1). P. 66-68. doi.org/10.1179/107735212X13293200778947.

26. Информационно-аналитический центр RUPEC, 19.02.2020. Доступно в сети: http://rupec.ru/news/43423/ - - дата обращения – 25.05.2021.

27. Yong S.T., Ooi C.W., Chai S.P., Wu X.S. // Int. J. Hydr. En. 2013. V. 38. P. 9541-52. http://dx.doi.org/10.1016/j.ijhydene.2013.03.023.

28. Sa S., Silva H., Brandao L., Sousa J.M., Mendes A. // Appl. Catal. B Environ. 2010. V. 99(1-2). P. 43-57. doi:10.1016/j.apcatb.2010.06.015

29. Shishido T., Yamamoto Y., Morioka H., Takaki K., Takehira K. // Appl. Catal. A. Gen. 2004. V. 263. P. 249-253.

30. Chen W.H., Syu Y.J. // Int. J. Hydr. En. 2011. V. 36. P. 3397-3408. doi:10.1016/j.ijhydene.2010.12.055.

31. Peppley B.A., Amphlett J.C., Kearns L.M., Mann R.F. // Appl. Catal. |A Gen. 1999. V. 179. P. 31-49.

32. Liu X., Toyir J., Ramírez de la Piscina P., Homs N. // Int. J. Hydr. En. 2017. V. 42 (19). P. 13704-13711. dx.doi.org/10.1016/j.ijhydene.2016.12.133.

33. Agrell J., Germani G., Jars S.G., Boutonnet M. // Appl. Catal. A Gen. 2003. V. 242. P. 233-245.

34. Agrell J., Hasselbo K., Jansson K., Jaras S.G., Boutonnet M. // Appl. Catal. A Gen. 2001. V. 211. P. 239-250.

35. Chen W.H., Guo Y.Z. // Fuel. 2018. V. 222. P. 599-609. https://doi.org/10.1016/j.fuel.2018.03.004.

36. Chen W.S., Chang F.W., Roselin L.S., Ou T.C., Lai S.C. // J. Mol. Catal. Chem. 2010. V. 318. P. 36-43. doi:10.1016/j.molcata.2009.11.005.

37. Jampa S., Jamieson A.M., Chaisuwan T., Luengnaruemitchai A., Wongkasemjit S. // Int. J. Hydr. En. 2017. V. 42. 15073-15084. dx.doi.org/10.1016/j.ijhydene.2017.05.022

38. Chen W.H., Lin B.J. // Int. J. Hydr. En. 2013. V. 38(24). P. 9973-9983. http://dx.doi.org/10.1016/j.ijhydene.2013.05.111.

39. Liu Y, Hayakawa T, Ishii T, Kumagai M, Yasuda H, Suzuki K. // Appl. Catal. A. Gen. 2001. V. 210. P. 301-314.

40. Matsumura Y, Tode N. // Phys. Chem. Chem. Phys. 2001. V. 3. P. 1284-1288.

41. Li G., Gu C., Zhu W., Wang X., Yuan X., Cui Z. // J. Clean. Prod. 2018. V. 183. P. 415-423. doi.org/10.1016/j.jclepro.2018.02.088.

42. Garcia G., Arriola E., Chen W.-H., De Luna M. D. // Energy. 2021. V. 217. 119384. doi.org/10.1016/j.energy.2020.119384.

43. Gribovskiy A.G., Makarshin L.L., Andreev D.V., Klenov O.P., Parmon V.N. // Chem Eng. J. 2015. V. 273. P. 130-137. doi.org/10.1016/j.cej.2015.03.036.

44. Chen J.Q., Bozzano A., Glover B., Fuglerud T., Kvisle S. // Catal. Today. 2005. V. 106(1-4). P. 103-107. doi:10.1016/j.cattod.2005.07.178.

45. Air Liquide E&C. Lurgi MTP™ – Метанол-в-пропилен. Промышленное производство пропилена. Доступно в сети по https://www.engineering-airliquide.com/ru/lurgi-mtp-propilen-iz-metanola – дата обращения – 25.05.2021

46. M.R. Gogate. // Petr. Sci. Techn. 2019. V. 37(5). P. 559–565. doi.org/10.1080/10916466.2018.1555589.

47. Tian, P., Wei, Y., Ye, M., Liu, Z. Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal. 2015. V. 5. P. 1922–1938. DOI: 10.1021/acscatal.5b00007.

48. Zhou J., Gao M., Zhang J., Liu W., Zhang T., Li H., Xu Z., Ye M., Liu Z. // Nature Commun. 2021. P. 12-17. doi.org/10.1038/s41467-020-20193-1.

49. Kempf R. (UOP LLC) «Advances in Commercialization of the UOP Advanced MTO Technology» 2011 Middle East Chem. Week Conf., 16-19 Oct. 2011, Abu Dhabi, UAE.

50. Kianfar E. // Petroleum Chemistry. 2021. doi: 10.1134/S0965544121050030

51. Bal Y., Zeng Q., Sun J., Song Q., Tang L., Zhang W., Liu Z.. // Journal of Porous Materials. 2021. doi.org/10.1007/s10934-021-01078-0.

52. Ye M., Tian P., Liu Z. // Engineering. 2021. V.7. P. 17–21. doi.org/10.1016/j.eng.2020.12.001

53. Liu G., Tian P., Li J., Zhang D., Zhou F., Liu Z. // Microporous and Mesoporous Materials. 2008. V. 111. P. 143–149. doi:10.1016/j.micromeso.2007.07.023.

54. Liu G., Tian P., Zhang Y., Li J., Xu L., Meng S., Liu Z. // Mesoporous Materials. 2008. V. 114. P. 143-149. doi:10.1016/j.micromeso.2008.01.030.

55. Gao S., Liu Z., Xu S., Zheng A., Wu P., Li B., Yuan X., Wei Y., Liu Z. // J. Catal. 2019. V. 377. P. 51-62. doi.org/10.1016/j.jcat.2019.07.010.

56. Wang C., Yang M., Tian P., Xu S., Yang Y., Wang D., Yuan Y., Liu Z. // J. Mater. Chem. A. 2015. V. 3. P. 5608–5616.doi: 10.1039/c4ta06124a.

57. Qiao Y., Yang M., Gao B., Wang L., Tian P., Xu S. Liu Z. // Chem. Comm. 2016. V.52. P. 5718-5721. doi: 10.1039/c5cc10070d.

58. Wu P., Yang M., Zhang W., Xu S., Guo P., Tian P., Liu Z. // Chem. Comm. 2017. V.53. P. 4985-4988. doi: 10.1039/c7cc01834g.

59. Wu P., Yang M., Sun L., Zeng S., Xu S., Tian P. Liu Z. // Chem. Comm. 2018. V.54. P. 11160-11163. doi: 10.1039/c8cc05871g.

60. Wu X., Xu S., Wei Y., Zhang W., Huang J., Xu S., He Y., Lin S., Sun T., Liu Z. // ACS Catal. 2018. V. 8(8). P. 7356-7361. /doi.org/10.1021/acscatal.8b02385.

61. Wei Y., Tian P., Ye M., Liu Z. // 2021 Sino-Russian High-level International Symposium on Catalysis (online). Plenary lecture 1. May, 21st, 2021.

62. Ahmad M.S., Cheng C.K., Bhuyar P., Atabani A.E., Pugazhendhi A., Lan Chic N.T., Witoon T., Lim J.W., Juan J.C.. // Fuel. 2021. V. 283. P. 118851. https://doi.org/10.1016/j.fuel.2020.118851.

63. Froment G., Dehertog W., Marchi A. // Catalysis. 1992. V. 9(1). P. 1–64.

64. Dehertog W., Froment G. // Appl. Catal. 1991. V. 71(1). P. 153–65.

65. Wu X., Anthony R. // Appl. Catal. A. 2001. V. 218(1–2). P. 241–250.

66. Vora B., Funk G., Bozzano A. / S.A. Treese et al. (eds.), Handbook of Petroleum Processing, Springer 2015, P. 883-904. doi: 10.1007/978-3-319-14529-7_14.

67. Jones H.T. // Platinum metals rev. 2000. V. 44 (3). P 94-105.

68. Bender M. New Technologies and Alternative Feedstocks in Petrochemistry and Refining, Dresden, Germany, 2013.

69. Conte M., Lopez-Sanchez J.A., He Q., Morgan D.J., Ryabenkova Y., Bartley J.K., Carley A.F., Taylor S.H., Kiely C.J., Khalid K., Hutchings G.J. // Catal. Sci. Technol. 2012. V. 2. P. 105–112. doi: 10.1039/c1cy00299f.

70. Zhang J., Qian W., Kong C., Wei F. // ACS Catal. 2015. V. 5. P. 2982–2988. doi.org/10.1021/acscatal.5b00192.

71. Pinilla-Herrero I., Borfecchia E., Holzinger J., Mentzel U.V., Joensen F., Lomachenko K.A., Bordiga S., Lamberti C., Berlier G., Olsbye U., Svelle S., Skibsted J., Beato P. // J. Catal. 2018. V. 362. P. 146–163. doi.org/10.1016/j.jcat.2018.03.032

72. Shoinkhorova T., Cordero-Lanzac T., Ramirez A., Chung S-h, Dokania A., Ruiz-Martinez J., Gascon J. // ACS Catal. 2021. V. 11(6). P. 3602–3613. https://doi.org/10.1021/acscatal.0c05133.

73. Pinilla-Herrero I., Borfecchia E., Cordero-Lanzac T., Mentzel U.V., Joensen F., Lomachenko K.A., Bordiga S., Olsbye U., Beato P., Svelle S. // J. Catal. 2021. V. 394. P. 416–428. https://doi.org/10.1016/j.jcat.2020.10.024

74. Wang Y., An H., Ma H., Zhang X., Kang G., Cao J. // Advanced Powder Technology. 2021. doi.org/10.1016/j.apt.2021.03.037.

75. ОАО Газпром. Российский рынок газа. Доступно в сети по https://www.gazprom.ru/about/marketing/russia/ – дата обращения – 25.05.2021.


Review

For citations:


Khassin A.A., Minyukova T.P. Modern trends in methanol processing. Kataliz v promyshlennosti. 2021;21(4):247-258. (In Russ.) https://doi.org/10.18412/1816-0387-2021-4-247-258

Views: 766


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)