Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Methanol to olefins conversion: state of the art and prospects of development

https://doi.org/10.18412/1816-0387-2021-5-281-296

Abstract

The production of olefins by catalytic transformation of methanol on zeolites and zeotypes is of great interest to scientists and specialists in various fringe areas of national economy. Due to implementation of this process on industrial level, the attention gradually shifts from scientific studies devoted to the synthesis and modification of zeolites and zeotypes with different structure to investigation of pilot and industrial plants and determination of the main economic and environmental characteristics of both the existing and the future plants. In 2019, the development of 26 production sites in China with the annual output of 14 million tons of ethylene and propylene was licensed and 14 plants with the total capacity of 7.67 million tons of ethylene and propylene were launched. The created plants provide a complete cycle of coal processing, which consists of coal gasification units yielding syngas, units for the synthesis of methanol and olefins, their refinement and production of polyethylene and polypropylene. The total output of ethylene and propylene at the launched plants was more than 21 million tons. The paper presents a review of publications on the development and modification of catalysts as well as the technological, economic and environmental aspects of olefins production from methanol, which appeared in foreign journals in the recent five years.

About the Authors

R. V. Brovko
Tver State Technical University
Russian Federation


M. G. Sulman
Tver State Technical University
Russian Federation


N. V. Lakina
Tver State Technical University
Russian Federation


V. Yu. Doluda
Tver State Technical University
Russian Federation


References

1. Kaiser S.W. Production of light olefins // Book Production of light olefins / Editor. ‒ US: Union Carbide Corporation, 1985.

2. Lewis J.M.O. // Studies in Surface Science and Catalysis / Ward J. W.Elsevier, 1988. Р. 199–207.

3. Vora B.V., Marker T.L., Barger P.T., Nilsen H.R., Kvisle S., Fuglerud T. // Studies in Surface Science and Catalysis / de Pontes M. и др.Elsevier, 1997. Р. 87–98.

4. Barger P.T., Vora B.V., Pujadó P.R., Chen Q. 1 // Studies in Surface Science and Catalysis / Anpo M. и др.Elsevier, 2003. Р. 109–114.

5. Chen J.Q., Bozzano A., Glover B., Fuglerud T., Kvisle S. // Catalysis Today. 2005. T. 106. № 1. C. 103-107. https://doi.org/10.1016/j.cattod.2005.07.178.

6. Chen J.Q., Vora B.V., Pujadó P.R., Gronvold, Fuglerud T., Kvisle S. // Studies in Surface Science and Catalysis / Bao X., Xu Y.Elsevier, 2004. ‒C. 1-6.

7. MTO complex planned for Nigeria // Focus on Catalysts. 2002. T. 2002. № 12. C. 6. https://doi.org/10.1016/S1351-4180(02)01240-0.

8. Technip to deliver Belgian demo MTO unit // Pump Industry Analyst. 2006. T. 2006. № 2. C. 3-4. https://doi.org/10.1016/S1359-6128(06)71248-4.

9. Gogate M.R. // Petroleum Science and Technology. 2019. T. 37. № 5. C. 559-565. 10.1080/10916466.2018.1555589.

10. Sun C., Wang Y., Zhao A., Wang X., Wang C., Zhang X., Wang Z., Zhao J., Zhao T. // Applied Catalysis A: General. 2020. T. 589. C. 117314. https://doi.org/10.1016/j.apcata.2019.117314.

11. Jiang X., Su X., Bai X., Li Y., Yang L., Zhang K., Zhang Y., Liu Y., Wu W. // Microporous and Mesoporous Materials. 2018. T. 263. C. 243-250. https://doi.org/10.1016/j.micromeso.2017.12.029.

12. Losch P., Pinar A.B., Willinger M.G., Soukup K., Chavan S., Vincent B., Pale P., Louis B. // Journal of Catalysis. 2017. T. 345. C. 11-23. https://doi.org/10.1016/j.jcat.2016.11.005.

13. Huang F., Cao J., Wang L., Wang X., Liu F. // Chemical Engineering Journal. 2020. T. 380. ‒C. 122626. https://doi.org/10.1016/j.cej.2019.122626.

14. Mousavi S.H., Fatemi S., Razavian M. // Particuology. 2018. T. 37. C. 43-53. https://doi.org/10.1016/j.partic.2017.06.004.

15. Nasser G.A., Muraza O., Nishitoba T., Malaibari Z., Al-Shammari T.K., Yokoi T. // Microporous and Mesoporous Materials. 2019. T. 274. C. 277-285. https://doi.org/10.1016/j.micromeso.2018.07.020.

16. Karakaya Yalcin B., Ipek B. // Applied Catalysis A: General. 2021. T. 610. C. 117915. https://doi.org/10.1016/j.apcata.2020.117915.

17. Han Z., Zhou F., Zhao J., Liu Y., Ma H., Wu G. // Microporous and Mesoporous Materials. 2020. T. 302. C. 110194. https://doi.org/10.1016/j.micromeso.2020.110194.

18. Han Z., Zhou F., Liu Y., Qiao K., Ma H., Yu L., Wu G. // Journal of the Taiwan Institute of Chemical Engineers. 2019. T. 103. C. 149-159. https://doi.org/10.1016/j.jtice.2019.07.005.

19. Park S., Sato G., Nishitoba T., Kondo J.N., Yokoi T. // Catalysis Today. 2020. T. 352. C. 175-182. https://doi.org/10.1016/j.cattod.2019.12.008.

20. Huang H., Yu M., Zhang Q., Li C. // Microporous and Mesoporous Materials. 2020. T. 295. C. 109971., https://doi.org/10.1016/j.micromeso.2019.109971.

21. Chae H.-J., Park S.S., Shin Y.H., Park M.B. // Microporous and Mesoporous Materials. 2018. T. 259. C. 60-66. https://doi.org/10.1016/j.micromeso.2017.09.035.

22. Tsunoji N., Osuga R., Yasumoto M., Yokoi T. // Applied Catalysis A: General. 2021. T. 620. C. 118176. https://doi.org/10.1016/j.apcata.2021.118176.

23. Azarhoosh M.J., Halladj R., Askari S., Aghaeinejad-Meybodi A. // Ultrasonics Sonochemistry. 2019. T. 58. C. 104646. https://doi.org/10.1016/j.ultsonch.2019.104646.

24. Sadeghpour P., Haghighi M. // Advanced Powder Technology. 2018. T. 29. № 5. C. 1175-1188. https://doi.org/10.1016/j.apt.2018.02.009.

25. Xue Y., Li J., Wang P., Cui X., Zheng H., Niu Y., Dong M., Qin Z., Wang J., Fan W. // Applied Catalysis B: Environmental. 2021. T. 280. C. 119391. https://doi.org/10.1016/j.apcatb.2020.119391.

26. Hashemi F., Taghizadeh M., Rami M.D. // Microporous and Mesoporous Materials. 2020. T. 295. C. 109970. https://doi.org/10.1016/j.micromeso.2019.109970.

27. Wang X., Li Z., Gong F., Ma M., Zhu Y. // Molecular Catalysis. 2021. T. 499. C. 111312. https://doi.org/10.1016/j.mcat.2020.111312.

28. Shi Z., Bhan A. // Journal of Catalysis. 2021. T. 395. C. 266-272. https://doi.org/10.1016/j.jcat.2021.01.015.

29. Hwang A., Kumar M., Rimer J.D., Bhan A. // Journal of Catalysis. 2017. T. 346. C. 154-160. https://doi.org/10.1016/j.jcat.2016.12.003.

30. Ebadzadeh E., Khademi M.H., Beheshti M. // Chemical Engineering Journal. 2021. T. 405. C. 126605. https://doi.org/10.1016/j.cej.2020.126605.

31. Minova I.B., Barrow N.S., Sauerwein A.C., Naden A.B., Cordes D.B., Slawin A.M. Z., Schuyten S.J., Wright P.A. // Journal of Catalysis. 2021. T. 395. C. 425-444. https://doi.org/10.1016/j.jcat.2021.01.012.

32. Valecillos J., Epelde E., Albo J., Aguayo A.T., Bilbao J., Castaño P. // Catalysis Today. 2020. T. 348. C. 243-256. https://doi.org/10.1016/j.cattod.2019.07.059.

33. Tanaka S., Fukui R., Kosaka A., Nishiyama N. // Materials Research Bulletin. 2020. T. 130. C. 110958. https://doi.org/10.1016/j.materresbull.2020.110958.

34. Suttipat D., Saenluang K., Wannapakdee W., Dugkhuntod P., Ketkaew M., Pornsetmetakul P., Wattanakit C. // Fuel. 2021. T. 286. C. 119306. https://doi.org/10.1016/j.fuel.2020.119306.

35. He T., Hou G., Li J., Liu X., Xu S., Han X., Bao X. // Journal of Energy Chemistry. 2017. T. 26. № 3. C. 354-358. https://doi.org/10.1016/j.jechem.2017.02.004.

36. Zang K., Zhang W., Huang J., Feng P., Ding J. // Chemical Physics Letters. 2019. T. 737. C. 136844. https://doi.org/10.1016/j.cplett.2019.136844.

37. Wang S., Li Z., Qin Z., Dong M., Li J., Fan W., Wang J. // Chinese Journal of Catalysis. 2021. T. 42. № 7. C. 1126-1136. https://doi.org/10.1016/S1872-2067(20)63732-9.

38. Hwang A., Johnson B. A., Bhan A. // Journal of Catalysis. 2019. T. 369. C. 86-94. https://doi.org/10.1016/j.jcat.2018.10.022.

39. Li D., Xing B., Wang B., Li R. // Fuel Processing Technology. 2020. T. 199. C. 106302, https://doi.org/10.1016/j.fuproc.2019.106302.

40. Hwang A., Le T. T., Shi Z., Dai H., Rimer J. D., Bhan A. // Journal of Catalysis. 2019. T. 369. C. 122-132. https://doi.org/10.1016/j.jcat.2018.10.031.

41. Zhou J., Zhi Y., Zhang J., Liu Z., Zhang T., He Y., Zheng A., Ye M., Wei Y., Liu Z. // Journal of Catalysis. 2019. T. 377. C. 153-162. https://doi.org/10.1016/j.jcat.2019.06.014.

42. Gao S., Xu S., Wei Y., Qiao Q., Xu Z., Wu X., Zhang M., He Y., Xu S., Liu Z. // Journal of Catalysis. 2018. T. 367. C. 306-314. https://doi.org/10.1016/j.jcat.2018.09.010.

43. Lo B.T.W., Ye L., Chang G.G.Z., Purchase K., Day S., Tang C.C., Mei D., Tsang S. C.E. // Applied Catalysis B: Environmental. 2018. T. 237. C. 245-250. https://doi.org/10.1016/j.apcatb.2018.05.090.

44. Pinilla-Herrero I., Olsbye U., Márquez-Álvarez C., Sastre E. // Journal of Catalysis. 2017. T. 352. C. 191-207. https://doi.org/10.1016/j.jcat.2017.05.008.

45. Xu X., Liu Y., Zhang F., Di W., Zhang Y. // Catalysis Today. 2017. T. 298. C. 61-68. https://doi.org/10.1016/j.cattod.2017.05.070.

46. Chen J.-M., Yu B., Wei Y.-M. // Applied Energy. 2018. T. 224. C. 160-174. https://doi.org/10.1016/j.apenergy.2018.04.051.

47. Ye M., Tian P., Liu Z. // Engineering. 2021. T. 7. № 1. C. 17-21. https://doi.org/10.1016/j.eng.2020.12.001.

48. Zhang C., Wang F., Lu B., Wang W., Liu M., Lu C. // Powder Technology. 2020. T. 372. C. 336-350. https://doi.org/10.1016/j.powtec.2020.06.010.

49. Zhang J., Lu B., Chen F., Li H., Ye M., Wang W. // Chemical Engineering Science. ‒ 2018. T. 189. C. 212-220. https://doi.org/10.1016/j.ces.2018.05.056.

50. Tanizume S., Maehara S., Ishii K., Onoki T., Okuno T., Tawarayama H., Ishikawa S., Nomura M. // Separation and Purification Technology. 2021. T. 254. C. 117647. https://doi.org/10.1016/j.seppur.2020.117647.

51. Xiang D., Liu S., Xiang J., Cao Y. // Energy Conversion and Management. 2017. T. 152. C. 239-249. https://doi.org/10.1016/j.enconman.2017.09.053.

52. Lv W.-j., Dang Z.-h., He Y., Chang Y.-l., Ma S.-h., Liu B., Gao L.-x., Ma L. // Chemical Engineering and Processing - Process Intensification. 2020. T. 149. C. 107846. https://doi.org/10.1016/j.cep.2020.107846.

53. Dimian A.C., Bildea C.S. // Chemical Engineering Research and Design. 2018. T. 131. C. 41-54. https://doi.org/10.1016/j.cherd.2017.11.009.

54. Lv W.-j., Chen J.-q., Chang Y.-l., Liu H.-l., Wang H.-l. // Chemical Engineering and Processing - Process Intensification. 2018. T. 131. C. 34-42. https://doi.org/10.1016/j.cep.2018.03.015.

55. Reyniers P.A., Vandewalle L.A., Saerens S., de Smedt P., Marin G.B., Van Geem K.M. // Applied Thermal Engineering. 2017. T. 115. C. 477-490. https://doi.org/10.1016/j.applthermaleng.2016.12.124.

56. Xiaolong G., Botong L., Xigang Y., Yiqing L., Kuo-Ksong Y. // Chinese Journal of Chemical Engineering. 2017. T. 25. № 8. C. 1069-1078. https://doi.org/10.1016/j.cjche.2017.03.018.

57. Gao D., Qiu X., Zhang Y., Liu P. // Computers & Chemical Engineering. 2018. T. 109. C. 112-118. https://doi.org/10.1016/j.compchemeng.2017.11.001.

58. Zhao Z., Jiang J., Wang F. // Journal of Energy Chemistry. 2021. T. 56. C. 193-202. https://doi.org/10.1016/j.jechem.2020.04.021.

59. Xu Z., Zhang Y., Fang C., Yu Y., Ma T. // Energy Policy. 2019. T. 135. C. 111004. https://doi.org/10.1016/j.enpol.2019.111004.

60. Xu Z., Fang C., Ma T. // Energy. 2020. T. 191. C. 116462. https://doi.org/10.1016/j.energy.2019.116462.

61. Lee J.-K., Shin S., Kwak G.-J., Lee M.-K., Lee I.-B., Yoon Y.-S. // Energy Conversion and Management. 2020. T. 224. C. 113316. https://doi.org/10.1016/j.enconman.2020.113316.

62. Ye L., Xie F., Hong J., Yang D., Ma X., Li X. // Energy. 2018. T. 157. C. 1015-1024. https://doi.org/10.1016/j.energy.2018.05.167.

63. Shen Q., Song X., Mao F., Sun N., Wen X., Wei W. // Journal of Environmental Sciences. 2020. T. 90. C. 352-363. https://doi.org/10.1016/j.jes.2019.11.004.

64. Zhao Z., Chong K., Jiang J., Wilson K., Zhang X., Wang F. // Renewable and Sustainable Energy Reviews. 2018. T. 97. C. 580-591. https://doi.org/10.1016/j.rser.2018.08.008.

65. Golubev K.B., Batova T.I., Kolesnichenko N.V., Maximov A.L. // Catalysis Communications. 2019. T. 129. C. 105744. https://doi.org/10.1016/j.catcom.2019.105744.

66. Li Y., Su X., Maximov A.L., Bai X., Wang Y., Wang W., Kolesnichenko N.V., Bukina Z.M., Wu W. // Russian Journal of Applied Chemistry. 2020. T. 93. № 1. C. 137-148. 10.1134/S1070427220010152.

67. Bondarenko G.N., Rodionov A.S., Kolesnichenko N.V., Batova T.I., Khivrich E.N., Maximov A.L. // Catalysis Letters. 2021. T. 151. № 5. C. 1309-1319. 10.1007/s10562-020-03399-2.

68. Maximov A.L., Magomedova M.V., Galanova E.G., Afokin M.I., Ionin D.A. P // Fuel Processing Technology. 2020. T. 199. C. 106281. https://doi.org/10.1016/j.fuproc.2019.106281.

69. Konnov S.V., Pavlov V.S., Ivanova I.I. // Microporous and Mesoporous Materials. ‒ 2020. T. 300. C. 110158. https://doi.org/10.1016/j.micromeso.2020.110158.

70. Afokin M.I., Smirnova E.M., Starozhitskaya A.V., Gushchin P.A., Glotov A.P., Maksimov A.L. // Chemistry and Technology of Fuels and Oils. 2020. T. 55. № 6. C. 682-688. 10.1007/s10553-020-01082-1.


Review

For citations:


Brovko R.V., Sulman M.G., Lakina N.V., Doluda V.Yu. Methanol to olefins conversion: state of the art and prospects of development. Kataliz v promyshlennosti. 2021;21(5):281-296. (In Russ.) https://doi.org/10.18412/1816-0387-2021-5-281-296

Views: 1704


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)