Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

The modern level of catalysts and technologies for natural gas conversion to syngas

https://doi.org/10.18412/1816-0387-2021-5-308-330

Abstract

The paper presents an analysis of the main catalysts and technologies applied for industrial conversion of natural gas to syngas, which is further used to produce ammonia, methanol and hydrogen. The analysis reveals the major trends in their development aimed to reduce the consumption of energy and resources; technological schemes of the processes as well as the catalysts and sorbents used in different steps of methane reforming and steam conversion of CO are described.

About the Authors

L. G. Pinaeva
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


A. S. Noskov
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


References

1. BP Energy Outlook: 2020 Edition. 157 P.

2. Natural Gas as C1 chemicals feedstock. NexantThinkingTM. Special Reports. 2015. 626 P.

3. https://yearbook.enerdata.ru/natural-gas/world-natural-gas-production-statistics.html – дата обращения 12.04.2021.

4. Devanney M.T. Natural Gas. (229.2000). Chemical Economics Handbook. IHS Chemical. 2013. 100 P.

5. The Future of Petrochemicals. Towards more sustainable plastics and fertilisers. International Energy Agency. © OECD/IEA 2018. 132 p.

6. Аминев С.Х. // Вестник химической промышленности. 27 декабря 2016. http://vestkhimprom.ru/posts/glubokaya-pererabotka-gaza-i-nefti-kak-klyuch-resheniya-problemy-importozameshcheniya-v-oblasti-khimii-i-neftekhimii – дата обращения 17.11.2020.

7. Choudhary T.V., Vasant R.C. // Angew. Chem. Int. Ed. 2008. V. 47. P. 1828–1847.

8. Trabulsy J. Ammonia. PERP-2014-6. Process Evaluation / Research Planning. Nexant ThinkingTM. 185 P.

9. Haggin J. // Chem. Eng. News. 1992. V.70. P. 33–35.

10. Водородная экономика: новые надежды на успех. Энергетический Бюллетень. 73, июнь 2019. Аналитический центр при Правительстве Российской Федерации. 28с.

11. Ramos L., Zeppieri S. // Fuel. 2013. V.110. P. 141–152.

12. https://www.topsoe.com/processes/ammonia/co-production – дата обращения 01.11.2020.

13. Производство аммиака, минеральных удобрений и неорганических кислот. Информационно-технический справочник по наилучшим доступным технологиям. ИТС 2-2009. Федеральное агентство по техническому регулированию и метрологии. М.: Бюро НДТ, 2019. 836 С.

14. Жигарева Г.В. // Вестник химической промышленности. 19 июля 2019. http://vestkhimprom.ru/posts/ammiak-istoriya-sovremennost-i-perspektivy-razvitiya-v-rossii, - дата обращения 20.05.2021.

15. http://www.rupec.ru/news/41274/ – дата обращения 11.09.2020.

16. http://www.metafrax.ru/ru/p/128 – дата обращения 11.09.2020.

17. http://n-azot.ru/news.php?news_id=1510&lang=RU – дата обращения 11.09.2020.

18. Davis S. Chemical Economics Handbook | Petrochemical Industry Overview (350.0000). 2015. IHS. 85 Р.

19. Sriram P., Nash M., Maronneaud O. IHC Chemical Economics Handbook. Methanol (674.5000). 2014. 104 P.

20. Global Methanol Demand. 2018. Argus. https://www.argusmedia.com/-/media/Files/brochures-and-downloads/global-methanol-demand-2018-flow-chart.ashx?la=en&hash=090F0C06A6A396546B3698F913E6A1AC54DEAE8E – дата обращения 06.11.2020.

21. https://www.refinitiv.ru/blog/market-insights/kratkij-obzor-rossijskogo-rynka-metanola-po-itogam-2019/ – дата обращения 20.05.2021.

22. http://n-azot.ru/about.php – дата обращения 09.11.2020.

23. da Silva M.J.// Fuel Process. Technol. 2016. V.145. P.42–61.

24. Ott J., Gronemann V., Pontzen F., Fiedler E., Grossmann G., Kersebohm B., Weiss G., Witte C. Ullmann’s Encyclopedia of Technical Chemistry, 7th edn. Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim. 2013.

25. Merchant Hydrogen: Industrial Gas and Energy Markets. CHM042C. September 2015. ISBN: 1-62296-158-7. 139P.

26. GasWorld. Россия и СНГ. ISSN 1755-3857. 2014. № 34. С. 20–23.

27. http://www.creonenergy.ru/consulting/detailConf.php?ID=101824 – дата обращения 15.07.2017.

28. Meleloe K., Walwyn D. // S. Afr. J. Bus. Manage. 2016. V.47. №3. P.63-72.

29. Naqvi S.N. Synthesis Gas Production from Natural Gas Reforming. PEP Report 148B. IHS Chemical Process Economics Program. 2013. 228 p.

30. You Y.W., Lee D.G., Kim K.H., Oh M., Lee C.H. // Chem. Eng. Sci. 2012. V. 68. P. 413–423.

31. https://www.constructionboxscore.com/project-news/air-products-to-build-new-texas-methane-reformer-for-downstream-users.aspx – дата обращения 23.11.2020.

32. https://www.airliquide.com/industry/chemicals – дата обращения 03.11.2020.

33. https://www.linde-engineering.com/en/process-plants/hydrogen_and_synthesis_gas_plants/gas_generation/steam_reforming/index.html – дата обращения 23.11.2020.

34. Trabulsy J., Chu R. Hydrogen Production in Refineries. NexantThinkingTM, PERP 2013S3. 2013. 172 p.

35. McWilliams A. Catalysts for Environmental and Energy Applications. CHM020E. BCC Research. ISBN: 1-62296-117-X. June 2015. 166 P.

36. Rostrup-Nielsen J.R., Rostrup-Nielsen T. Large-scale Hydrogen Production. https://www.topsoe.com/sites/default/files/topsoe_large_scale_hydrogen_produc.pdf – дата обращения 16.06.2017.

37. US Patent 7449167. 2008.

38. Kumar A., M. Baldea M., Edgar. T.F. // Comput. Chem. Eng. 2017. V. 105. P. 224–236.

39. Brunson R., Flessner U., Morse P. // Catalysis. 2013. P. 41–49.

40. US Patent 5685890. 1997.

41. US Patent 5753143. 1998.

42. US Patent 6984371. 2006.

43. US 2009/02204113. 2009.

44. Анчита Х., Спейт Дж. Переработка тяжелых нефтей и нефтяных остатков. Гидрогенизационные процессы. СП-б.: Профессия, 2013. 384 с.

45. US Patent 7767619. 2010.

46. US Patent 7771586. 2010.

47. http://www.sud-chemie-india.com/uploads/documents/ammonia/1.%20%20Reforming%20Catalyst.pdf – дата обращения 02.08.2017.

48. https://www.topsoe.com/products/catalysts/rc-67-titantm?hsLang=en – дата обращения 26.05.2021.

49. Yamazaki O., Tomishige K., Fujimoto K. // Appl. Catal. A Gen. 1996. V. 136. P. 49–56.

50. WO 2014/048740. 2014.

51. US 2015/0231608. 2015.

52. Speight J.G. Handbook of Petroleum Refining. 2017. Taylor&Francis Group LLC. 726 p.

53. https://www.topsoe.com/ru/tehnologii/vodorod – дата обращения 20.07.2017.

54. https://www.topsoe.com/ru/processes/hydrogen/reforming – дата обращения 20.05.2021.

55. Meloni E., Martino M., Palma V. // Catalysts. 2020. V. 10. P. 352–390.

56. Cross J., Jones G., Kent M.A. // Nitrogen+Syngas. May -June 2016. V. 341. P. 40–48; http://www.jmprotech.com/pdfs-library/NS-341-Pre-reforming-catalysts-PRINT.pdf – дата обращения 16.06.2017.

57. Catalysts for Syngas. 2010. Clariant International Ltd. http://www.clariant.com/Catalysts - дата обращения 20.07.2018.

58. US Patent 7622058. 2009.

59. WO 2016/047504. 2016.

60. Pashchenko D. // Energy Convers. Manag. 2019. V. 185. P. 465–472.

61. Clariant ReforMax LDP Plus: a new generation of reforming catalysts with ultra-low pressure drop. Focus on Catalysts. 2017. V. 2017. № 5. P. 4.

62. Librera C. // PTQ. Q2 2020. P. 43-47.

63. US Patent 4861745. 1989.

64. Ratnasamy C., Wagner J.P. // Catal. Rev. 2009. V. 51. P. 325–440.

65. Aasberg-Petersen K., Dybkjær I., Ovesen C.V., Schjødt N.C., Sehested J., Thomsen S.G. // J. Nat. Gas Sci. Eng. 2011. V.3. № 2. P. 423–459.

66. Busca G. Catalysts for Hydrogenations, Dehydrogenations and Metathesis: Sulfides and Oxides. In “Heterogeneous Catalytic Materials”. 2014. Elsevier B.V. P. 345-374; http://dx.doi.org/10.1016/B978-0-444-59524-9.00010-9

67. Li Q., Ma W., He R., Mu Z. // Catal. Today. 2005. V. 106. P. 52–56.

68. Natesakhawat S., Wang X., Zhang L., Ozkan U.S. // J. Mol. Catal. A Chem. 2006. V. 260. P. 82–94.

69. EP 1149799. 2001.

70. EP 1445235. 2004.

71. https://www.clariant.com/ru-RU/Corporate/News/2014/09/Clariant-introduces-ShiftMax-reg--120-HCF--New-HTS-catalyst-with-essentially-no-hexavalent-chromium – дата обращения 13.05.2021.

72. Gines M.J.L., Amadeo N., Laborde M., Apestegufa C.R. // Appl. Catal. A Gen. 1995. V.131. P.283–296.

73. US Patent 4835132. 1987.

74. WO 2003/082468 A1.

75. US 2010/0102278. 2010.

76. US 2010/0112397. 2010.

77. US Patent 6693057. 2004.

78. US Patent 6627572. 2006.

79. US Patent 4863894. 1989.

80. US Patent 9492809. 2016.

81. US 2009/0149324. 2009.

82. Reddy G.K., Smirniotis P.G. Introduction About WGS Reaction. In “Water Gas Shift Reaction”. 2015. Elsevier B.V. P.1-20. http://dx.doi.org/10.1016/B978-0-12-420154-5.00001-2

83. Tanaka Y., Utaka T., Kikuchi R., Sasaki K., Eguchi K. // Appl. Catal. A Gen. 2003. V. 242. P. 287–295.

84. EP 2 599 541. 2011.

85. WO 2013/079323. 2013.

86. Wang X., Gorte R.J. // Appl. Catal. A Gen. 2003. V. 247. P. 157–162.

87. Panagiotopoulou P., Kondarides D.I. // Catal.Today. 2006. V. 112. P. 49–52.

88. Gorte R.J., Zhao S. // Catal. Today. 2005. V.104 P.18–24.

89. Choung S.Y., Ferrandon M., Krause T. // Catal. Today. 2005. V.99. P.257–262.

90. Radhakrishnan R., Willigan R.R., Dardas Z., Vanderspurt T.H. // Appl. Catal. B Environ. 2006. V. 66. P. 23–28.

91. Pinaeva L.G., Sadovskaya E.M., Ivanova Yu.A., Kuznetsova T.G., Prosvirin I.P., Sadykov V.A., Schuurman Y., van Veen A.C., Mirodatos C. // Chem. Eng. J. 2014. V. 257. P. 281–291.

92. US Patent 8119099. 2012.

93. https://www.topsoe.com/ru/processes/hydrogen/co-shift – дата обращения 12.05.2021.

94. Dahl P.J., Speth C., Jensen A.E.K., Symreng M., Hoffmann M.K., Han P.A., Nielsen S.E. New SynCOR Ammonia™ Process. https://info.topsoe.com/new-syncor-ammonia-process-wp-dlp – дата обращения 29.04.2021.

95. http://www.jmcatalysts.cn/en/pdf/HydrogenTechBrochFeb2007.pdf – дата обращения 23.12.2018.

96. https://matthey.com/-/media/files/markets/jm-ammonia-market-brochure-c2018.pdf – дата обращения 13.05.2021.

97. Xiao J., Mei A., Tao W., Ma S., Bénard P., Chahine R. // Energies. 2021. V. 14. P. 2450–2464.

98. Grande C.A. PSA Technology for H2 Separation. In “Hydrogen Science and Engineering: Materials, Processes, Systems and Technology”. Eds. D. Stolten and B. Emonts. 2016. Wiley-VCH Verlag GmbH & Co”. 491-508.

99. Separation Technology R&D Needs for Hydrogen Production in the Chemical and Petrochemical Industries, Chemical Industry Vision 2020 initiative to help identify future R&D needs. 2005. 68 p.

100. Chou C., Chen F., Huang Y.J., Yang H. // Chem. Eng. Trans. 2013. V. 32. P.1855-1860.

101. Ebner A.D., Ritter J.A.// Sep. Sci. Technol. 2009. V. 44. P. 1273–1421.

102. Hao G.P., Li W.C., Lu A.H. // J. Mater. Chem. 2011. V. 21. P. 6447–6451.

103. Di Biase E., Sarkisov L. // Carbon. 2015. V. 94. P. 27–40.

104. Azpiri Solares R.A., dos Santos D.S., Ingram A., Wood. J. // Fuel. 2019. V. 253. P. 1130–1139.

105. Lopes F.V.S., Grande C.A., Ribeiro A.M., Oliveira E.L.G., Loureiro J.M., Rodrigues A.E. // Ind. Eng. Chem. Res. 2009. V. 48. № 8. P. 3978–3990.

106. Regufe M.J., Tamajon J., Ribeiro A.M., Ferreira A., Lee U.H., Hwang Y.K., Chang J.S., Serre C., Loureiro J.M., Rodrigues A.E. // Energ. Fuels. 2015. V. 29. № 7. P. 4654–4664.

107. Agueda V.I., Delgado J.A., Uguina M.A., Brea P., Spjelkavik A.I.; Blom R., Grande C. // Chem. Eng. Sci. 2015. V.124. P.159–169.

108. Huang A., Chen Y., Wang N., Hu Z., Jiang J., Caro J. // Chem. Commun. 2012. V. 48. № 89. P. 10981–10983.

109. Zhao L., Primabudi E., Stolten D. // Energy Procedia. 2014. V. 63. P. 1756–1772.

110. Krishna R., Long J.R. // J. Phys. Chem. C. 2011. V. 115. № 26. P. 12941–12950.

111. Masala A., Vitillo J.G., Mondino G., Grande C.A., Blom R., Manzolic M., Marshall M., Bordiga S. // ACS Appl. Mater. Interfaces. 2017. V. 9. № 1. P. 455–463.

112. Britt D., Furukawa H., Wang B., Glover T.G., Yaghi O.M. // PNAS. 2009. V. 106. № 49. P. 20637–20640.

113. Xiang S., He Y., Zhang Z., Wu H., Zhou W., Krishna R., Chen B. // Nat. Commun. 2012. V. 3. P. 954.

114. Grande C.A., Águeda V.I., Spjelkavik A., Blom R. // Chem. Eng. Sci. 2015. V. 124. P. 154–158.

115. Grande C.A., Blom R., Andreassen K.A., Stensrød R.E. // Energy Procedia. 2017. V. 114. P. 2265–2270.

116. Al-Naddaf Q., Thakkar H., Rezaei F. // ACS Appl. Mater. Interfaces. 2018. V. 10. № 35. P. 29656–29666.

117. US Patent 8815208. 2014.

118. US Patent 9604200. 2017.

119. https://matthey.com/-/media/files/markets/jm-ammonia-market-brochure-c2018.pdf – дата обращения 06.05.2021.

120. https://www.topsoe.com/products/catalysts/rka-10?hsLang=en – дата обращения 21.05.2021.

121. Houa Z., Chen P., Fang H., Zhenga X., Yashima T. // Int. J. Hydrog. Energy. 2006. V. 31. P. 555–561.

122. Yentekakis I.V., Panagiotopoulou P., Artemakis G. // Appl. Catal. B Environ. 2021. V. 296. P. 120210.

123. Liu W., Li L., Lin S., Luo Y., Bao Z., Mao Y., Li K., Wua D., Peng H. // J. Energy Chem. 2022. V. 65. P. 34–47.

124. Liu C., Ye J., Jiang J., Pan Y. // ChemCatChem 2011. V. 3. P. 529–541.

125. Nair M.M., Kaliaguine S. // New J. Chem. 2016. V. 40. P. 4049–4060.

126. Xu L., Miao Z., Song H., Chen W., Chou L. // Catal. Sci. Technol. 2014. V. 4. P. 1759–1770.

127. Li S., Gong J. // Chem. Soc. Rev. 2014. V. 43. P. 7245–7256.

128. Batiot-Dupeyrat C., Gallego G.A.S., Mondragon F., Barrault J., Tatibouët J.-M. // Catal. Today 2005. V. 107. P. 474–480.

129. de Sousa F.F., de Sousa H.S., Oliveira A.C., Junior M.C., Ayala A.P., Barros E.B., Viana B.C., Josue Filho M., Oliveira A.C. // Int. J. Hydrog. Energy 2012. V. 37. P. 3201–3212.

130. Le Saché E., Pastor-Pérez L., Watson D., Sepúlveda-Escribano A., Reina T. // Appl. Catal. B Environ. 2018. V. 236. P. 458–465.

131. Zubenko D., Singh S., Rosen B.A. // Appl. Catal. B Environ. 2017. V. 209. P. 711–719.

132. Bhattar S., Abedin Md. A., Kanitkar S., Spivey J.J. // Catal. Today 2021. V. 365. P. 2–23.

133. Gao Y., Chen D., Saccoccio M., Lu Z., Ciucci F. // Nano Energy 2016. V. 27. P. 499–508.

134. Neagu D., Oh T.-S., Miller D.N., Ménard H., Bukhari S.M., Gamble S.R., Gorte R.J., Vohs J.M., Irvine J.T.S. // Nat. Commun. 2015. V. 6. P. 8120.

135. Sun Y., Li J., Zeng Y., Amirkhiz B.S., Wang M., Behnamian Y., Luo J. // J. Mater. Chem. A. 2015. V. 3. P. 11048–11056.

136. Tsekouras G., Neagu D., Irvine J.T.S. // Energy Environ. Sci. 2013. V. 6. P. 256–266.

137. Arbag H., Yasyerli S., Yasyerli N., Dogu G. // Int. J. Hydrogen Energy. 2010. V. 35. P. 2296–2304.

138. Damyanova S., Pawelec B., Arishtirova K., Fierro J., Sener C., Dogu T. // Appl. Catal. B Environ. 2009. V. 92. P. 250–261.

139. Guo J., Lou H., Zhao H., Chai D., Zheng X. // Appl. Catal. A Gen. 2004. V. 273. P. 75–82.

140. Guo J., Lou H., Zheng X. // Carbon 2007. V. 45. P. 1314–1321.

141. Koo K.Y., Roh H.S., Seo Y.T., Seo D.J., Yoon W.L., Park S.B. // Appl. Catal. A Gen. 2008. V. 340. P. 183–190.

142. Choa E., Lee Y.H., Kimb H., Jang E.J., Kwak J.H., Lee K., Koa C.H., Yoon W.L. // Appl. Catal. A General 2020. V. 602. P. 117694.

143. Fernandez C., Miranda N., García X., Eloy P., Ruiz P., Gordon A., Jimenez R.// Appl. Catal. B: Environ. 2014. V. 156. P. 202–212.

144. Alirezaei I., Hafizi A., Rahimpour M. // J. CO2 Util. 2018. V.23. P.105–116.

145. Nagaoka K., Seshan K., Aika K.-i., Lercher J.A. // J. Catal. 2001. V. 197. P. 34–42.

146. Dębek R., Galvez M.E., Launay F., Motak M., Grzybek T., Da Costa P. // Int. J. Hydrogen Energy. 2016. V. 41. P. 11616–11623.

147. Ozkara-Aydınoglu S., Aksoylu A.E. // Catal. Commun. 2010. V. 11. P. 1165–1170.

148. Laosiripojana N., Chadwick D., Assabumrungrat S. //Chem. Eng. J. 2008. V. 138. P. 264–273.

149. Xu B.Q., Wei J.M., Yu Y.T., Li Y., Li J.L., Zhu Q.M. // J. Phys. Chem. B 2003. V. 107. P. 5203–5207.

150. Morales Anzures F., Salinas Hernandez P., Mondragon Galicia G., Gutierrez Martınez A., Tzompantzi Morales F., Romero Romo M.A., Perez Hernandez R. // Int. J Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2021.05.073.

151. Lou Y., Steib M., Zhang Q., Tiefenbacher K., Horvath A., Jentys A., Liu Y., Lercher J.A. // J. Catal. 2017. V. 356. P. 147–156.

152. Swirk K., Rønning M., Motak M., Grzybek T., Da Costa P. // Int. J Hydrogen Energy 2021. V. 46. P. 12128–12144.

153. Pompeo F., Nichio N.N., Ferretti O.A., Resasco D. // Int. J Hydrogen Energy. 2005. V. 30. P. 1399–1405.

154. Wang Y., Zhao Q., Li L., Hu C., Da Costa P. // Appl. Catal. A General. 2021. V. 617. P. 118120.

155. Wang N., Chu W., Zhang T., Zhao X.S. // Chem. Eng. J. 2011. V. 170. P. 457–463.

156. Lu Y., Zhu J., Peng X., Tong D., Hu C. // Int. J. Hydrogen Energy 2013. V. 38. P. 7268–7279.

157. Seok S.H., Choi S.H., Park E.D., Han S.H., Lee J.S. // J. Catal. 2002. V. 209. P. 6–15.

158. Luna A.E.C., Iriarte M.E. // Appl. Catal. A Gen. 2008. V. 343. P. 10–15.

159. Liu H., Hadjltaief H.B., Benzina M., Galvez M.E., Da Costa P. // Int. J. Hydrogen Energy 2019. V. 44. P. 246–255.

160. Wang J.B., Tai Y.L., Dow W.P., Huang T.J. // Appl. Catal. A Gen. 2001. V. 218. P. 69–79.

161. Yan X., Hu T., Liu P., Li S., Zhao B., Zhang Q., Jiao W., Chen S., Wang P., Lu J., Fan L., Deng X., Pan Y.X. // Appl. Catal. B Environ. 2019. V. 246. P. 221–231.

162. Alvarez-Galvan M.C., Navarro R.M., Rosa F., Briceno Y., Gordillo Alvarez F., Fierro J.L.G. // Int. J. Hydrogen Energy 2008. V. 33. P. 652–663.

163. Gonzalez-Delacruz V.M., Ternero F., Pereñíguez R., Caballero A., Holgado J.P. // Appl. Catal. A Gen. 2010. V. 384. P. 1–9.

164. Liu Z., Grinter D.C., Lustemberg P.G., Nguyen-Phan T.D., Zhou Y., Luo S., Waluyo I., Crumlin E.J., Stacchiola D.J., Zhou J., Carrasco J., Busnengo H.F., Ganduglia-Pirovano M.V., Senanayake S.D., Rodriguez J.A. // Angew. Chem. Int. Ed. 2016. V. 55. P. 7455–7459.

165. Yu M., Zhu Y.A., Lu Y., Tong G., Zhu K., Zhou X. // Appl. Catal. B Environ. 2015. V. 165. P. 43–56.

166. Charisiou N., Siakavelas G., Tzounis L., Sebastian V., Monzon A., Baker M., Hinder S., Polychronopoulou K., Yentekakis I., Goula M. // Int. J. Hydrogen Energy 2018. V. 43. P. 18955–18976.

167. Kambolis A., Matralis H., Trovarelli A., Papadopoulou C. // Appl. Catal. A Gen. 2010. V. 377. P. 16–26.

168. Ocsachoque M., Pompeo F., Gonzalez G. // Catal. Today 2011. V. 172. P. 226–231.

169. Guo D., Lu Y., Ruan Y., Zhao Y., Zhao Y., Wang S., Ma X. // Appl. Catal. B Environ. 2020. V. 277. P. 119278.

170. Horvath A., Nemeth M., Beck A., Maroti B., Safran G., Pantaleo G., Liotta L.F., Venezia A.M., La Parola V. // Appl. Catal. A Gen. 2021. V.621. P.118174.

171. Han K., Yu W., Xu L., Deng Z., Yu H., Wang F. // Fuel 2021. V. 291. P. 120182.

172. Marinho A.L.A., Toniolo F.S., Noronha F.B., Epron F., Duprez D., Bion N. // Appl. Catal. B Environ. 2021. V. 281. P. 119459.

173. Teh L.P., Setiabudi H.D., Timmiati S.N., Aziz M.A.A., Annuar N.H.R., Ruslan N.N. // Chem. Eng. Sci. 2021. V. 239. P. 116606.

174. TechnipFMC Parallel Reformer (TPR®). 8P. https://www.technipfmc.com/media/2qkb4se5/tpr-parallel-reformer_210x270_final_web.pdf – дата обращения 28.04.2021.

175. Sandberg P. Optimal performance – integration of Haldor Topsoe Heat Exchange Reformer in ammonia plants. 15P. https://info.topsoe.com/hter-whitepaper – дата обращения 10.11.2020.

176. https://www.thyssenkrupp-industrial-solutions.com/ – дата обращения 10.11.2020.

177. https://ucpcdn.thyssenkrupp.com/_legacy/UCPthyssenkruppBAIS/assets.files/products___services/fertilizer_plants/ammonium_sulphate_plants/brochure-ammonia_scr.pdf – дата обращения 03.11.2020.

178. https://www.kbr.com/en/solutions/technologies/process-technologies/ammonia-fertilizers-technologies – дата обращения 01.11.2020.

179. Methanol: The Basic Chemical and Energy Feedstock of the Future. Springer-Verlag. 2014. 699 P.

180. Dahl P.J., Christensen T.S., Winter-Madsen S., King S.M. Proven autothermal reforming technology for modern largescale methanol plants. Nitrogen + Syngas, International Conference & Exhibition. 2014. pp. 1-12.

181. Methanol and Derivatives. Proven technologies for optimal production. 2016. https://www.engineering-airliquide.com/sites/activity_eandc/files/2016/07/13/methanol_and_derivatives_brochure-june_2016.pdf – дата обращения 21.11.2020.

182. Aasberg-Petersen K., Hansen J.H.B., Christensen T.S., Dybkjaer I., Christensen P.S., Nielsen C.S., Madsen S.E.L.W., Rostrup-Nielsen J.R. // Appl. Catal. A Gen. 2001. V. 221. P. 379–387.

183. Голосман Е.З., Дульнев А.В., Ефремов В.Н., Круглова М.А., Лунин В.В., Обысов М.А., Поливанов Б.И., Ткаченко И.С., Ткаченко С.Н. // Катализ в промышленности 2017. Т. 17. № 6. С. 487–509.

184. Овсиенко О.Л., Никульшин П.А., Караванов А.Н., Юшкин В.А. // Катализ в промышленности. 2019. Т. 19. № 2. С. 142–148.

185. https://www.rosneft.ru/press/news/item/197399/ – дата обращения 23.06.2021.

186. Патент РФ 2677650. 2017.


Review

For citations:


Pinaeva L.G., Noskov A.S. The modern level of catalysts and technologies for natural gas conversion to syngas. Kataliz v promyshlennosti. 2021;21(5):308-330. (In Russ.) https://doi.org/10.18412/1816-0387-2021-5-308-330

Views: 660


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)