

Key intermediates in the hydrogenation of carboxylic acids over Pt-ReOx/TiO2 catalyst
https://doi.org/10.18412/1816-0387-2022-2-18-24
Abstract
The reactivity of different forms of adsorbed acetic acid on the Pt-ReOx/TiO2 catalyst was studied. To this end, in situ FTIR spectroscopy at T = 200 °С was used to identify three forms of adsorbed acetic acid: bidentate acetates and two forms of molecularly adsorbed acetic acid (1645–1653 and 1700–1720 cm–1). Rate constants for the consumption of two forms of molecularly adsorbed acetic acid, which are equal to 0.029 and 0.02 s–1, respectively, were found to be close to the rate constant of the catalytic reaction equal to 0.034 s–1, which was measured at T = 200 °С. It was concluded that two forms of molecularly adsorbed acetic acid serve as the key intermediates in the hydrogenation of acetic acid over Pt-ReOx/TiO2 catalyst.
About the Authors
N. V. MakolkinRussian Federation
E. A. Paukshtis
Russian Federation
V. V. Kaichev
Russian Federation
A. P. Suknev
Russian Federation
B. S. Bal’zhinimaev
Russian Federation
H. U. Kim
Korea, Republic of
J. Jae
Korea, Republic of
References
1. Pritchard J., Filonenko G.A., Van Putten R., Hensen E.J.M., Pidko E.A. // Chem. Soc. Rev. 2015. V. 44. № 11. P. 3808-3833. DOI: 10.1039/C5CS00038F.
2. Castiglioni G.L., Ferrari M., Guercio A., Vaccari A., Lancia R., Fumagalli C. // Catal. Today. 1996. V. 27. P. 181–186. DOI: 10.1016/0920-5861(95)00209-X.
3. S. Antons, A.S. Tilling, E. Wolters, US 6 355 848 B1, 2002
4. J. Clayden, N. Greeves, S. Warren and P. Wothers, Organic Chemistry, Oxford University Press, 2000.
5. H. Adkins and R. Connor // J. Am. Chem. Soc. 1931, 53, 1091–1095.
6. Nishimura S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis; Wiley: New York, 2001; Chapter 10.3, pp 416−423
7. A. Suknev, V. Zaikovskii, V. Kaichev, E. Paukshtis, E. Sadovskaya, B. Bal’zhinimaev // J. Energy Chem. 2015. V. 24. № 5. P. 646–654. DOI: 10.1016/j.jechem.2015.09.003.
8. Y. Takeda, M. Tamura, Y. Nakagawa, K. Okumura, K. Tomishige // ACS Catal. 2015. V. 5. № 11. P. 7034–7047. DOI: 10.1021/ acscatal.5b01054.
9. Ly B.-K., Tapin B., Aouine M., Delichere P., Epron F., Pinel C., Especel C., Besson M. // Chem. Cat. Chem. 2015. V. 7. № 14. P. 2161–2178. DOI: 10.1002/cctc.201500197.
10. Bal’zhinimaev B.S., Paukshtis E.A., Suknev A.P., Makolkin N.V. // J. Energy Chem. 2018. V. 27. № 3. P. 903—912. DOI: 10.1016/j.jechem.2017.07.018.
11. Balzhinimaev B., Suknev A., Paukshtis E., Batueva I. // Catalysis in Green Chemistry and Engineering. 2018. V. 1. № 1. P. 27-42. DOI: 10.1615/.2017021077.
12. Liu L., Meira D.M., Arenal R., Concepcion P., Puga A.V., Corma A. // ACS Catalysis. 2019. V. 9. № 12. P. 10626-10639 DOI: 10.1021/acscatal.9b04214.
13. Y. Zhang, D. Fu, X. Xu, Y. Sheng, J. Xu, Y. Han // Current Opinion in Chemical Engineering. 2016. V. 12. P. 1-7. DOI: 10.1016/j.coche.2016.01.004.
14. Dumesic J.A., Huber G.W., Boudart M. Principles of Heterogeneous Catalysis. In Handbook of Heterogeneous Catalysis (2008). DOI: 10.1002/9783527610044.hetcat0001.
15. Zhou M, Zhang H., Ma H., Ying W. // Fuel. 2017. V. 203. P. 774–780. DOI: 10.1016/j.fuel.2017.03.063.
16. Manyar H.G., Paun C., Pilus R., Rooney D.W., Tompson J.M., Hardacre C. // Chem. Comm. 2010. V 46. № 34. P. 6279 - 6289. DOI: 10.1039/C0CC01365J.
17. Chen L., Zhu Y., Zheng H., Zhang C., Li Y. // Appl. Catal. 2012. V. 411–412. P. 95–104. DOI: 10.1016/j.apcata.2011.10.026.
18. P.A. Dub, T. Ikariya // ACS Catal. 2012. V. 2. № 8 . P. 1718–1741. DOI: 10.1021/cs300341g.
19. Makolkin N.V., Kim H.U., Paukshtis E.A., Jae J., Bal’zhinimaev B.S. // Cat. in Ind. 2020. V.12. № 4. P. 316-322. DOI: 10.1134/s207005042004011x.
20. Ly B.K., Tapin B., Epron F., Pinel C., Especel C., Besson M. // Catal. Today. 2019. V. 355. P. 75-83. DOI: 10.1016/j.cattod.2019.03.024.
21. Steinrück H.-P, Pesty F., Zhang L., Madey T.E. // Phys. Rev. B. 1995. V. 51. № 4. P. 2427–2439. DOI: 10.1103/PhysRevB.51.2427.
22. Reiche R., Oswald S., Wetzig K. // Appl. Surf. Sci. 2001. V. 179. P. 316-323. DOI: 10.1016/S0169-4332(01)00300-2.
23. Chan A.S.Y., Chen W., Wang H., Rowe J.E., Madey T.E. // J. Phys. Chem. B. 2004. V. 108. № 38. P. 14643-14651. DOI: 10.1021/jp040168x.
24. Wang H., Chan A.S.Y., Chen W., Kaghazchi P., Jacob T., Madey T.E. // ACS Nano. 2007. V. 1. № 5. P. 449–455. DOI: 10.1021/ nn700238r.
25. Dong X., Lei J., Chen Y., Jiang H., Zhang M. // Applied Catalysis B: Environmental. 2019. V. 244. P. 448–458. DOI: 10.1016/j.apcatb.2018.11.062.
26. K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, 4th edn., 1986. P. 232–233.
27. L.-F. Liao, C.-F. Lien, J.-L. Lin // Phys. Chem. Chem. Phys. 2001. V. 3. № 17. P. 3831–3837. DOI: 10.1039/B103419G.
Review
For citations:
Makolkin N.V., Paukshtis E.A., Kaichev V.V., Suknev A.P., Bal’zhinimaev B.S., Kim H.U., Jae J. Key intermediates in the hydrogenation of carboxylic acids over Pt-ReOx/TiO2 catalyst. Kataliz v promyshlennosti. 2022;22(2):18-24. (In Russ.) https://doi.org/10.18412/1816-0387-2022-2-18-24