Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Silver catalysts for the partial oxidation of alcohols

https://doi.org/10.18412/1816-0387-2022-2-42-56

Abstract

The review analyzes state of the art in the partial oxidation of alcohols to carbonyl compounds over Ag catalysts, including the partial oxidation of methanol to formaldehyde, oxidation of ethylene glycol to glyoxal, and oxidation of ethanol to acetaldehyde. For the methanol oxidation process, conditions for implementing the BASF and ICI technologies are considered and the entire chain of transformations from natural gas to formaldehyde is estimated in terms of exergy. When considering modern kinetic studies for the partial oxidation of alcohols on silver, some recent publication are analyzed, particularly those devoted to the application of a ring-shaped reactor to suppress the homogeneous steps of formaldehyde decomposition, the development of a new approach to simulation of the process taking into account different reactivity of the catalyst, and the creation of a simulator to calculate the methanol oxidation process using a neural network with a genetic algorithm. Main steps in the development of a technology for the partial oxidation of ethylene glycol to glyoxal on Ag catalysts are briefly described. The author analyzes modern experimental and theoretical works devoted to the formation mechanisms of oxygencontaining active sites on the silver surface and their involvement in the conversion of alcohols to carbonyl compounds, as well as the new Ag-containing catalytic compositions.

About the Author

O. V. Vodyankina
Tomsk State University
Russian Federation


References

1. . Torbina V.V., Vodyankin A.A., Ten S., Mamontov G.V., Salaev M.A., Sobolev V.I., Vodyankina O.V. // Catalysts. 2018. Vol. 8. № 10. P. 1-56.

2. Franz A.W., Kronemayer H., Pfeiffer D., Pilz R.D., Reuss G.,W. Disteldorf, Gamer A.O., Hilt A., Formaldehyde, Ulmann’s Encyclopedia of Industrial Chemistry. 2016. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim doi: 10.1002/14356007.a11_619.pub2.

3. Rebsdat S., Mayer D., Ethylene Oxide, Ulmann’s Encyclopedia of Industrial Chemistry. 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim DOI: 10.1002/14356007.a10_117.

4. Pu T., Tian H., Ford M.E., Rangarajan S., Wachs I.E. // ACS Catalysis. 2019. P. 10727-10750. doi: 10.1021/acscatal.9b03443.

5. Salaev, M.A., Salaeva, A.A., Vodyankina, O.V. // Catalysis Today. 2021. V. 375. P. 585–590. Doi: 10.1016/j.cattod.2020.04.057.

6. Водянкина О.В., Курина Л.Н., Петров Л.А., Князев А.С. Глиоксаль. М.: Academia, 2007. 248 с.

7. Salaev M.A., Krejker A.A., Magaev O.V., Malkov V.S., Knyazev A.S., Borisova E.S., Khanaev V.M., Vodyankina O.V., Kurina L.N. // Chemical Engineering Journal. 2011. V. 172. P. 399-409.

8. Arpentinier P., Cavani F., Trifiro F., The Technology of Catalytic Oxidations, Editions Technip, Paris, 2001.

9. https://rupec.ru/news/40719/

10. Ochoa, J.V., Cavani, F. // RSC Green Chem. 2015, 28, 203–230, doi:10.1039/9781782621652-00203.

11. https://dynea.com/technology-sales/new-formaldehyde-plants/fasil-operational-costs/

12. Millar G.J., Collins M. // Industrial and Engineering Chemistry Research. 2017. V. 56 (33). P. 9247-9265.

13. Halbritter, G., Muehlthaler, Sperber, H., Diem, H., Dudeck, C., Lehmann, G., Manufacture of Formaldehyde. Patent US 4072717 A 1978.

14. Cпособ регенерации серебряного катализатора получения формальдегида. Патент РФ № 2242281; опубл. 20.12.2004.

15. Серебряный катализатор для получения формальдегида. Патент РФ № 2403597; опубл. 10.01.2014.

16. Wachs, I.E., Wang, C. Preparation of formaldehyde by catalytic oxidation of methanol with good yield and selectivity. Pat. WO9955655A1 1999.

17. Bahmanpour Ali Mohammad, Hoadley Andrew, Tanksale Akshat // Rev. Chem. Eng. 2014; V. 30(6): p.583–604.

18. Oxidizing hydroxy compounds to carbonyl compounds, Patent GB 1,272,592 priority date 02.05.1968. LAPORT Chemicals Ltd.

19. Способ непрерывного промышленного получения глиоксаля. Патент РФ № 2499247 от 02.11.2015.

20. Patent US 4,503,261 priority date 22.07.1982; Patent US 4,511,739 priority date 04.16.1984; Patent DE 2922599 priority date 04.12.1980; патент RU 2058290 от 20.04.1996; Patent DE 19811288 priority date 23.09.1999; патент RU 2321577 от 10.04.2008.

21. Patent US 4,555,583 priority date 26.11.1985; Patent US 4978803 priority date 18.12.1990.

22. Patent DE 2922599 priority date 04.12.1980; Patent DE 19811288 priority date 23.09.1999.

23. Deng, J., Wang, J., Xu, X. et al. // Catal. Lett. 1996. V. 36. P. 207–214. doi: 10.1007/BF00807621.

24. Vodyankina O.V., Mamontov G.V., Dutov V.V., Kharlamova T.S., Salaev M.A. Ag-containing nanomaterials in heterogeneous catalysis: Advances and Recent Trends. Book Chapter 5 in “Advanced Nanomaterials for catalysis and energy”, Elsevier. 2019. 38 p. doi: 10.1016/B978-0-12-814807-5.00005-X.

25. Lervold, S., Lødeng, R., Yang, J., Skjelstad, J., Bingen, K., Venvik, H.J. // Chem. Eng. J., 2021. V. 423, paper № 130141.

26. Quaglio M., Bezzo F., Gavriilidis A., Cao E., Al-Rifai N., Galvanin F. // AIChE J. 2019. V.65 (10), paper № e16707.

27. Galvanin F., Cao E., Al-Rifai N., Dua V., Gavriilidi, A. // Chimica Oggi/Chemistry Today, (2015) V. 33 (3), pp. 51-56.

28. Cao E., Gavriilidis A. // Catal. Today (2005) V. 110, P. 154-163.

29. Filho A.C.P., Filho R.M. // Chem. Engin. J., 2010. V .157, Iss. 2–3, P. 501-508.

30. Waterhouse G., Bowmaker G., Metson J. // Appl. Catal. A, 2004. V. 266. pp. 257-273.

31. Мамонтов Г.В., Князев А.С., Паукштис Е.А., Водянкина О.В. // Кинетика и катализ. 2013. Т. 54. № 6. С. 776–785.

32. Karatok, M., Sensoy, M.G., Vovk, E.I., Ustunel, H., Toffoli, D., Ozensoy, E. // ACS Catalysis. 2021. V.11 (10). P. 6200-6209.

33. Andryushechkin B.V., Shevlyuga V.M., Pavlova T.V., Zhidomirov G.M., Eltsov K.N. // JETP Letters. 2017. V. 105. P. 292–296.

34. Andryushechkin B.V., Shevlyuga V.M., Pavlova T.V., Zhidomirov G.M., Eltsov K.N. // Physical Review Letters. 2016. V. 117. Paper 056101.

35. Andryushechkin B.V., Shevlyuga V.M., Pavlova T.V., Zhidomirov G.M., Eltsov K.N. // J. Chemical Physics. 2018. V. 148. Paper 244702.

36. Turano M.E., Juurlink L.B.F., Gillum M.Z., Jamka E.A., Hildebrandt G., Lewis F., Killelea D.R. // J. Vacuum Science and Technology A: Vacuum, Surfaces and Films. 2021. V. 39. Paper 053201.

37. Yang, M., You, R., Li, D., Zhang, Z., Huang, W. // Catalysis Letters. 2019. V. 149 (9). P. 2482-2491.

38. Lervold, S., Arnesen, K., Beck, N., Lødeng, R., Yang, J., Bingen, K., Skjelstad, J., Venvik, H.J. // Topics in Catalysis. 2019. V. 62 (7-11), P. 699-711.

39. Vodyankina O.V., Koscheev S.V., Yakushko V.T., Salanov A.N., Boronin A.I., Kurina L.N. // J. Molec. Catal. A: Chemical. (2000). V. 158. P. 381–387.

40. Zhou, B., Huang, E., Almeida, R., Gurses, S., Ungar, A., Zetterberg, J., Kulkarni, A., Kronawitter, C.X., Osborn, D.L., Hansen, N., Frank, J.H. // ACS Catalysis. 2021. V.11 (1), pp. 155-168.

41. Aljama, H.; Yoo, J. S.; Nørskov, J. K.; Abild-Pedersen, F.; Studt, F. // ChemCatChem. 2016. V.8. P. 3621−3625.

42. Salaev, M.A.; Poleshchuk, O.K.; Vodyankina, O.V. // J. Mol. Catal. A Chem. 2015. V. 396. P. 61–67, doi:10.1016/j.molcata.2014.09.032.

43. Salaev, M.A.; Poleshchuk, O.K.; Vodyankina, O.V. // J. Mol. Catal. A Chem. 2016. V. 417. P. 36–42, doi:10.1016/j.molcata.2016.03.011.

44. Capote A.J., Madix R.J. // J. Am. Chem. Soc. 1989. V.111. p. 3750.

45. Kaskow, I., Wojtaszek-Gurdak, A., Sobczak, I. // Catalysis Today. 2020. V. 354. P. 123-132.

46. Pestryakov, A., Lunin, V. // Current Organic Synthesis. 2017. V.14. P. 372-376.

47. Vodyankina O.V., Blokhina A.S., Kurzina I.A., Sobolev V.I., Koltunov K.Y., Chukhlomina L.N., Dvilis E.S. // Catalysis Today. 2013. V. 203. pp. 127 – 132. doi: 10.1016/j.cattod.2012.02.056.

48. Mamontov G.V., Magaev O.V., Knyazev A.S., Vodyankina O.V. // Catalysis Today. 2013. V. 203. pp. 122 – 126. doi: 10.1016/j.cattod.2012.02.048.

49. Knyazev A.S., Magaev O.V., Krejker A.A., Mamontov G.V., Knyazeva E.M., Dahnavi E.M., Vodyankina O.V. // Key Engineering Materials. 2015. V. 670. P. 126-132.

50. Rana, P.H., Parikh, P.A., Catalytic transformation of ethanol to industrially relevant fine chemicals (Book Chapter), Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals, 2020. p. 49-74.

51. Катализатор переработки этанола и способ получения ацетальдегида и водорода с использованием этого катализатора. Патент РФ № 2558368 от 28.06.2014.

52. Mamontov G.V., Grabchenko M.V., Sobolev V. I., Zaikovskii V.I., Vodyankina O.V. // Applied Catalysis A: General. 2016. V. 528. pp. 161-167. doi: 10.1016/j.apcata.2016.10.005.

53. Autthanit, C., Chatkaew, W., Praserthdam, P., Jongsomjit, B. // J. Environ. Chem. Eng. 2020. V. 8(2), P. 103547.

54. Dutov V.V., Mamontov G.V., Zaikovskii V.I., Sobolev V. I., Vodyankina O.V. // Catalysis Today. 2016. V. 278. Is. 1. pp. 164-173. doi: 10.1016/j.cattod.2016.05.058.

55. Liu P., Zhu X., Yang S., Li T., Hensen E.J.M. // J. Catal. 2015. V.331. P. 138–146.

56. Liu, K., Hou, C., Sun, Y., Cao, X. // Catal. Comm. 2020 V. 135. P. 105892.

57. Grabchenko, M.V., Mamontov, G.V., Zaikovskii, V.I., Vodyankina, O.V. // Kinetics and Catalysis. 2017. V. 58. Is. 5, P. 642-648. Doi: 10.1134/S0023158417050056.


Review

For citations:


Vodyankina O.V. Silver catalysts for the partial oxidation of alcohols. Kataliz v promyshlennosti. 2022;22(2):42-56. (In Russ.) https://doi.org/10.18412/1816-0387-2022-2-42-56

Views: 590


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)