Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

A dust-collecting device for dehydrogenation of paraffin hydrocarbons with a fluidized catalyst bed

https://doi.org/10.18412/1816-0387-2022-2-57-64

Abstract

The paper considers the problem of collecting solid particles in the production line with dehydrogenation of С4–С5 isoparaffins to isoolefins in a fluidized catalyst bed. The collecting of finely dispersed catalyst particles for dehydrogenation of paraffin hydrocarbons using a standard CN-15 cyclone and a new dust-collecting device (NDD) with arched elements was studied. The results of numerical simulation of CN-15 and NDD are reported. A comparative study revealed that NDD is more efficient than CN-15 in collecting the finely dispersed solid particles with the size below 20 μm. For NDD, determinate variations in the pressure and rate profiles, without any critical deviations, were observed. The gas flow rate through the arched elements of NDD was found to be stable, in distinction to CN-15, where high rates appear at the cyclone edges, thus raising the probability of dust breakthrough into the flow to be purified.

About the Authors

E. I. Salakhova
Nizhnekamsk Institute of Chemistry and Technology (branch of Kazan National Research Technological University)
Russian Federation


A. V. Dmitriev
Kazan State Power Engineering University
Russian Federation


V. E. Zinurov
Kazan State Power Engineering University
Russian Federation


I. R. Nabiullin
PJSC "Nizhnekamskneftekhim", Nizhnekamsk
Russian Federation


I. I. Salakhov
JSC "Taneco", Nizhnekamsk
Russian Federation


References

1. Nakhaei, M.; Lu, B.; Tian, Y.; Wang, W.; Dam-Johansen, K.; Wu, H. CFD Modeling of Gas–Solid Cyclone Separators at Ambient and Elevated Temperatures. Processes 2020, 8, 228. (https://doi.org/10.3390/pr8020228).

2. Катаев А.Н., Егоров А.Г., Егорова С.Р., Ламберов А.А. // Катализ в промышленности. 2015. Т. 15. № 3. С. 60–66.

3. Комаров С.М., Котельников Г.Р., Рогозина Н.П., Смирнов Б.К., Никитина В.М., Магсумов И.А. // Катализ в промышленности. 2005. № 3. С. 38–43.

4. Haig, C.; Hursthouse, A.; McIlwain, S.; Sykes, D. // Powder Technol. 2014. № 258, 110–124.

5. Fassani, F.; Goldstein, L. // Powder Technol. 2000. № 107. P. 60–65.

6. Калаева С.З., Муратова К.М., Чистяков Я.В., Чеботарев П.В. // Известия Тульского гос. ун-та. Науки о Земле. 2016. Вып. 3. С. 40–63.

7. Ветошкин А.Г. Процессы и аппараты пылеочистки. Учебное пособие. Пенза: Пензенского гос. ун-та, 2005. 210 с.

8. Патент РФ 1679709; опубл. 1996.

9. Зинуров В.Э., Дмитриев А.В., Латыпов Д.Н. Соловьева О.В. // Вестник технологич. ун-та. 2019. Т. 22. № 8. С. 33–37.

10. Дмитриев А.В., Зинуров В.Э., Дмитриева О.С., Нгуен В.Л. // Вестник Казанского гос. энергетич. ун-та. 2018. Т.10. №1(37). С. 74–81.

11. Калаева С.З., Муратова К.М., Чистяков Я.В., Чеботарев П.В. // Известия Тульского гос. ун-та. 2016. Вып. 3. С. 40–63.

12. Патент РФ 2509609; опубл. 2014.

13. Патент РФ 2132750; опубл. 2014.

14. Xiong, Z.; Ji, Z.; Wu, X. // Powder Technol. 2014. № 253. P. 644–649.

15. Qian, F.; Zhang, J.; Zhang, M. // J. Hazard. Mater. 2006. № 136. P. 822–829.

16. Huang, Y.; Mo, X.; Yang, H.; Zhang, M.; Lv, J. // In Clean Coal Technology and Sustainable Development. 2016. P. 301–307.

17. Cortés, C.; Gil, A. // Prog. Energy Combust. Sci. 2007. № 33. P. 409–452.

18. Towler, G.; Sinnott, R. // Chem. Eng. Des. 2013. P. 937–1046.

19. Trefz, M.; Muschelknautz, E. // Chem. Eng. Technol. 1993. № 16. P. 153–160.


Review

For citations:


Salakhova E.I., Dmitriev A.V., Zinurov V.E., Nabiullin I.R., Salakhov I.I. A dust-collecting device for dehydrogenation of paraffin hydrocarbons with a fluidized catalyst bed. Kataliz v promyshlennosti. 2022;22(2):57-64. (In Russ.) https://doi.org/10.18412/1816-0387-2022-2-57-64

Views: 304


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)