Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Deactivation of hydrotreating catalysts (A review)

https://doi.org/10.18412/1816-0387-2022-3-38-65

Abstract

The results of studies on deactivation of hydrotreating catalysts reported in scientific and technical literature are considered and systematized in the review. The effect exerted by the feedstock composition and hydrotreatment conditions on the catalyst coking is revealed. The factorsleading to changes in the morphology of active component and the possibilities to weaken this type of catalyst deactivation during commercial operation are considered. The effect of a pressure drop over the catalyst bed on the run time as well as the action of catalytic poisons and the ways of their penetration into hydrotreatment distillates are shown. This review can be interesting and useful to chemical engineers involved in the study of catalytic systems and to oil industry specialists.

About the Authors

S. V. Budukva
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


D. D. Uvarkina
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


O. V. Klimov
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


A. S. Noskov
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


References

1. Bartholomew C.H. // Appl. Catal. A: Gen. 2001. Vol. 212, № 1/2. P. 17–60.

2. Topsøe H. // Appl. Catal. A Gen. 2007. Vol. 322, № Suppl. P. 3–8.

3. Lauritsen J.V., Kibsgaard J., Olesen G.H. et al. // J. Catal. 2007. Vol. 249, № 2. P. 220–233.

4. Eijsbouts S. // Appl. Catal. A: Gen. 1997. Vol. 158, № 1/2. P. 53–92.

5. Leliveld B.R.G., van Dillen J.A.J., Geus J.W. et al. // J. Phys. Chem. B. 1997. Vol. 101, № 51. P. 11160–11171.

6. De Beer V.H.J., Van Sint Fiet T.H.M., Van Der Steen G.H.A.M. et al. // J. Catal. 1974. Vol. 35, № 2. P. 297–306.

7. Schuit G.C.A., Gates B.C. // AIChE J. 1973. Vol. 19, № 3. P. 417–438.

8. Voorhoeve R.J.H. // J. Catal. 1971. Vol. 23, № 2. P. 236–242.

9. Baeza P., Ureta-Zañartu M.S., Escalona N. et al. // Appl. Catal. A: Gen. 2004. Vol. 274, № 1/2. P. 303–309.

10. Pajonk G.M. // Appl. Catal. A: Gen. 2000. Vol. 202, № 2. P. 157–169.

11. Daage M., Chianelli R.R., Ruppert A.F. // Studies in Surface Science and Catalysis. 1993. Vol. 75, № C. P. 571–584.

12. Daage M., Chianelli R.R. // J. Catal. 1994. Vol. 149, № 2. P. 414–427.

13. Topsøe H., Candia R., Topsøe N.-Y., Clausen B.S. // Bull. des Sociétés Chim. Belges. 2010. Vol. 93, № 8/9. P. 783–806.

14. Topsøe H., Clausen B.S. // Catal. Rev. 1984. Vol. 26, № 3/4. P. 395–420.

15. Bouwens S.M.A.M., Vanzon F.B.M., Vandijk M.P. et al. // J. Catal. 1994. Vol. 146, № 2. P. 375–393.

16. Kibsgaard J., Lauritsen J.V., Lægsgaard E. et al. // J. Am. Chem. Soc. 2006. Vol. 128, № 42. P. 13950–13958.

17. Eijsbouts S., Van Den Oetelaar L.C.A., Van Puijenbroek R.R. // J. Catal. 2005. Vol. 229, № 2. P. 352–364.

18. Bergwerff J.A., Jansen M., Leliveld B.(R.)G. et al. // J. Catal. 2006. Vol. 243, № 2. P. 292–302.

19. Crajé M.W.J., Debeer V.H.J., Vanveen J.A.R., Vanderkraan A.M. // J. Catal. 1993. Vol. 143, № 2. P. 601–615.

20. Okamoto Y., Breysse M., Dhar G.M., Song C. // Catal. Today. 2003. Vol. 86, № 1–4. P. 1–3.

21. Kotter M., Riekert L. // Studies in Surface Science and Catalysis. 1979. Vol. 3, № C. P. 51–63.

22. Cattaneo R., Shido T., Prins R. // J. Catal. 1999. Vol. 185, № 1. P. 199–212.

23. Rajagopal S., Grimm T.L., Collins D.J., Miranda R. // J. Catal. 1992. Vol. 137, № 2. P. 453–461.

24. Ishihara A., Dumeignil F., Wang D. et al. // Appl. Catal. A: Gen. 2005. Vol. 292, № 1/2. P. 50–60.

25. Mazurelle J., Lamonier C., Lancelot C.et al. // Catal. Today. 2008. Vol. 130, № 1. P. 41–49.

26. Breysse M., Portefaix J.L., Vrinat M. // Catal. Today. 1991. Vol. 10, № 4. P. 489–505.

27. Segawa K., Satoh S. // Catal. Today. 1996. Vol. 29, № 1-4. P. 215–219.

28. Li D. // Appl. Catal. B: Environ. 1998. Vol. 16, № 3. P. 255–260.

29. Li D., Sato T., Imamura M. et al. // J. Catal. 1997. Vol. 170, № 2. P. 357–365.

30. Klimov O. V., Vatutina Yu.V., Nadeina K.A. et al. // Catal. Today. 2018. Vol. 305. P. 192–202.

31. Pérez-Martínez D.J., Gaigneaux E.M., Giraldo S.A. // Appl. Catal. A: Gen. 2012. Vol. 421–422. P. 48–57.

32. Nadeina K.A., Klimov O.V., Pereima V.Yu. et al. // Catal. Today. 2016. Vol. 271. P. 4–15.

33. La Parola V., Deganello G., Scirè S., Venezia A.M. // J. Solid State Chem. 2003. Vol. 174, № 2. P. 482–488.

34. Gheek P., Suppan S., Trawczyński J. et al. // Catal. Today. 2007. Vol. 119, № 1–4. P. 19–22.

35. Sakanishi K., Nagamatsu T., Mochida I., Whitehurst D.D. // J. Mol. Catal. A: Chem. 2000. Vol. 155, № 1/2. P. 101–109.

36. Farag H., Mochida I., Sakanishi K. // Appl. Catal. A: Gen. 2000. Vol. 194. P. 147–157.

37. Ancheyta J., Rana M.S., Furimsky E. // Catal. Today. 2005. Vol. 109, № 1–4. P. 3–15.

38. Dufresne P. // Appl. Catal. A: Gen. 2007. Vol. 322. P. 67–75.

39. Marafi A., Stanislaus A., Furimsky E. // Catal. Rev. - Sci. Eng. 2010. Vol. 52, № 2. P. 204–324.

40. Marafi A., Maruyama F., Sanislaus A.M., Kam E. // Ind. Eng. Chem. Res. 2008. Vol. 47, № 3. P. 724–741.

41. Vogelaar B.M., Eijsbouts S., Bergwerff J.A., Heiszwolf J.J. // Catal. Today. 2010. Vol. 154, № 3/4. P. 256–263.

42. Centeno G., Ancheyta J., Alvarez A. et al. // Fuel. 2012. Vol. 100. P. 73–79.

43. Ancheyta-Juárez J., Aguilar-Rodrı́guez E., Salazar-Sotelo D. et al. // Appl. Catal. A: Gen. 1999. Vol. 180, № 1/2. P. 195–205.

44. Catalyst deactivation // Studies in Surface Science and Catalysis. 2007. Vol. 169. P. 141–216.

45. Absi-Halabi M., Stanislaus A., Trimm D.L. // Appl. Catal. 1991. Vol. 72, № 2. P. 193–215.

46. Sahoo S.K., Ray S.S., Singh I.D. // Appl. Catal. A: Gen. 2004. Vol. 278, № 1. P. 83–91.

47. Snape C.E., Diaz M.C., Tyagi Y.R. et al. // Studies in Surface Science and Catalysis. 2001. Vol. 139. P. 359–365.

48. Rana M.S., Ancheyta J., Sahoo S.K., Rayo P. // Catal. Today. 2014. Vol. 220–222. P. 97–105.

49. Guichard B., Roy-Auberger M., Devers E. et al. // Appl. Catal. A: Gen. 2009. Vol. 367, № 1/2. P. 1–8.

50. Hauser A., Stanislaus A., Marafi A., Al-Adwani A. // Fuel. 2005. Vol. 84, № 2/3. P. 259–269.

51. Deactivation and Regeneration // Studies in Surface Science and Catalysis. 1989. Vol. 51, № C. P. 339–346.

52. Wiwel P., Zeuthen P., Jacobsen A.C. // Studies in Surface Science and Catalysis. 1991. Vol. 68, № C. P. 257–264.

53. Callejas M.A., Martı́nez M.T., Blasco T., Sastre E. // Appl. Catal. A: Gen. 2001. Vol. 218, № 1/2. P. 181–188.

54. Richardson S.M., Nagaishi H., Gray M.R. // Ind. Eng. Chem. Res. 1996. Vol. 35, № 11. P. 3940–3950.

55. Furimsky E., Massoth F.E. // Catal. Rev. - Sci. Eng. 2005. Vol. 47, № 3. P. 297–489.

56. Beltramone A.R., Crossley S., Resasco D.E. et al. // Catal. Letters. 2008. Vol. 123, № 3/4. P. 181–185.

57. Robinson P. R., Dolbear G. E., Hydrotreating and Hydrocracking: Fundamentals // Practical Advances in Petroleum Processing / Ed. by C.S. Hsu, P.R. Robinson. New York, NY : Springer New York, 2006.

58. Rana M.S., Navarro R., Leglise J. // Catal. Today. 2004. Vol. 98, № 1/2 (Spec. Iss.) P. 67–74.

59. Logadóttir Á., Moses P.G., Hinnemann B. et al. // Catal. Today. 2006. Vol. 111, № 1/2. P. 44–51.

60. Cooper B.H., Knudsen K.G. Ultra Deep Desulfurization of Diesel: How an Understanding of the Underlying Kinetics can Reduce Investment Costs // ACS Division of Petroleum Chemistry, Inc. Preprints. New York, NY : Springer New York, 2001. Vol. 46, № 4. P. 338–340.

61. Dong D., Jeong S., Massoth F.E. // Catal. Today. 1997. Vol. 37, № 3. P. 267–275.

62. Scaroni A.W., Jenkins R.G., Utrilla J.R., Walker P.L. // Fuel Process. Technol. 1984. Vol. 9, № 1. P. 103–108.

63. Koide R., Iwanami Y., Konishi S. et al. // Fuel. 2015. Vol. 153. P. 455–463.

64. Sumbogo Murti S.D., Choi K.-H., Korai Y., Mochida I. // Appl. Catal. A: Gen. 2005. Vol. 280, № 2. P. 133–139.

65. Budukva D.V., Klimov O.V., Pashigreva A.V. et al. // Russ. J. Appl. Chem. 2010. Vol. 83, № 12. P. 2144–2151.

66. Ho T.C., Markley G.E. // Appl. Catal. A: Gen. 2004. Vol. 267, № 1/2. P. 245–250.

67. Rana M.S., Al-Barood A., Brouresli R. et al. // Fuel Process. Technol. 2018. Vol. 177. P. 170–178.

68. Furimsky E. // Ind. Eng. Chem. Res. 2013. Vol. 52, № 50. P. 17695–17713.

69. Furimsky E. // Catal. Rev. 1983. Vol. 25, № 3. P. 421–458.

70. Catalysis in the Refining of Fischer-Tropsch Syncrude. Cambridge : Royal Society of Chemistry, 2010.

71. Dabros T.M.H., Gaur A., Pintos D.G. et al. // Appl. Catal. A: Gen. 2018. Vol. 551. P. 106–121.

72. Furimsky E. // Catal. Today. 2013. Vol. 217. P. 13–56.

73. Badawi M., Paul J.F., Cristol S. et al. // J. Catal. 2011. Vol. 282, № 1. P. 155–164.

74. Klimov O.V., Nadeina K.A., Dik P.P. et al. // Catal. Today. 2016. Vol. 271. P. 56–63.

75. Marroquín-Sánchez G., Ancheyta-Juárez J. // Appl. Catal. A: Gen. 2001. Vol. 207, № 1/2. P. 407–420.

76. Mederos F.S. Rodríguez M.A., Ancheyta J., Arce E. // Energy and Fuels. 2006. Vol. 20, № 3. P. 936–945.

77. Gunjal P.R., Ranade V.V. // Chem. Eng. Sci. 2007. Vol. 62, № 18–20. P. 5512–5526.

78. Bukhtiyarova G.A., Vlasova E.N., Aleksandrov P.V. et al. // Catal. Ind. 2017. Vol. 9, № 3. P. 212–220.

79. Sadrameli S.M. // Fuel. 2016. Vol. 173. P. 285–297.

80. Chen X., Li T.,Xin L. et al. // Catal. Commun. 2016. Vol. 74. P. 95–98.

81. Stanislaus A., Marafi A., Rana M.S. // Catal. Today. 2010. Vol. 153, № 1. P. 1–68.

82. Kabe T., Qian W., Ishihara A. // Catal. Today. 1997. Vol. 39, № 1/2. P. 3–12.

83. Qian W., Ishihara A., Aoyama Y., Kabe T. // Appl. Catal. A: Gen. 2000. Vol. 196, № 1. P. 103–110.

84. Vogelaar B.M., Steiner P., van der Zijden T.F et al. // Appl. Catal. A: Gen. 2007. Vol. 318. P. 28–36.

85. Massoth F.E., Koltai T., Tétényi P. // J. Catal. 2001. Vol. 203, № 1. P. 33–40.

86. Topsøe H., Clausen B.S., Massoth F.E. Hydrotreating Catalysis // Catalysis. Berlin, Heidelberg : Springer Berlin Heidelberg, 1996. P. 1–269.

87. Kogan V.M. // Appl. Catal. A: Gen. 2002. Vol. 237, № 1/2. P. 161–169.

88. Kogan V.M., Rozhdestvenskaya N.N., Korshevets I.K. // Appl. Catal. A: Gen. 2002. Vol. 234, № 1/2. P. 207–219.

89. Dumeignil F., Paul J.-F., Veilly E. et al. // Appl. Catal. A: Gen. 2005. Vol. 289, № 1. P. 51–58.

90. Paul J.F., Payen E. // J. Phys. Chem. B. 2003. Vol. 107, № 17. P. 4057–4064.

91. Cristol S.. Paul J.F., Payen E. et al. // J. Phys. Chem. B. 2002. Vol. 106, № 22. P. 5659–5667.

92. Vogelaar B.M., Kagami N., van der Zijden T.F. et al. // J. Mol. Catal. A: Chem. 2009. Vol. 309, № 1/2. P. 79–88.

93. Karroua M., Matralis H., Grange P., Delmon B. // J. Catal. 1993. Vol. 139, № 2. P. 371–374.

94. Eijsbouts S., van den Oetelaar L.C.A., Louwen J.N. et al. // Ind. Eng. Chem. Res. American Chemical Society, 2007. Vol. 46, № 12. P. 3945–3954.

95. Guichard B., Roy-Auberger M., Devers E. et al. // Catal. Today. 2008. Vol. 130, № 1. P. 97–108.

96. Günter J.R., Marks O., Korányi T.I., Paál Z. // Appl. Catal. 1988. Vol. 39, № C. P. 285–294.

97. Niemann W., Clausen B.S., Topsøe H. // Catal. Letters. 1990. Vol. 4, № 4–6. P. 355–363.

98. Zhao X.J., Wei J. // J. Catal. 1994. Vol. 147, № 2. P. 429–440.

99. Eijsbouts S., Li X., Bergwerff J. et al. // Catal. Today. 2017. Vol. 292. P. 38–50.

100. Eijsbouts S., Battiston A.A., van Leerdam G.C. // Catal. Today. 2008. Vol. 130, № 2–4. P. 361–373.

101. Надиров Н.К., Котова А.В., Камьянов В.Ф. Металлы в нефтях. Алма-Ата : Наука, 1984. 448 c.

102. Hirner A.V. // Metal Complexes in Fossil Fuels / Ed. by R.H. Filby, J.F. Branthaver. Washington, DC : American Chemical Society, 1987. ACS Symposium Series. Vol. 344. P. 146–153.

103. Stigter J.B., de Haan H.P.M., Guicherit R. et al. // Environ. Pollut. 2000. Vol. 107, № 3. P. 451–464.

104. Puri B.K., Irgolic K.J. // Environ. Geochem. Health. 1989. Vol. 11, № 3/4. P. 95–99.

105. Free H.H. Catalyst Deactivation [HVGO’s and lighter feeds] // Akzo Nobel Catal. Cour. № 17.

106. Ng C.F., Ye H., She L. et al. Arsenic poisoning of nickel catalysts for the adsorption of ethene // Appl. Catal. A: Gen. 1998. Vol. 171, № 2. P. 293–299.

107. Nielsen B., Villadsen J. // Appl. Catal. 1984. Vol. 11, № 1. P. 123–138.

108. Jallais A., Thomas M., Hugon A., Bezverkhyy I. // Appl. Catal. A: Gen. 2021. Vol. 610. Article 117958.

109. Maurice V., Ryndin Yu.A., Bergeret G. et al. // J. Catal. 2001. Vol. 204, № 1. P. 192–199.

110. Ryndin Yu.A., Candy J.P., Didillon B. et al. // J. Catal. 2001. Vol. 198, № 1. P. 103–108.

111. Siegel J., Olsen C. Feed contaminants in hydroprocessing units [Electronic resource]. Chicago, 2008. P. 2–6. URL: https://paperzz.com/doc/8120426/feed-contaminants-in-hydroprocessing-units

112. Britto J.M., Reboucas M. V., Bessa I. // Hydrocarb. Process. 2010. Vol. 89, № 10. P. 65–69.

113. Olsen C. AT734G: A combined silicon and arsenic guard catalyst // ART Catalagram Spec. Ed. 2010. № 108. P. 9–13.

114. Puig-Molina A., Nielsen L.P., Molenbroek A.M., Herbst K. // Catal. Letters. 2004. Vol. 92, № 1/2. P. 29–34.

115. S. Eijsbouts, Mayo S., Burns L., Anderson G. Deactivation of Hydrotreating Catalysts in Different Reaction Zones of a VGO FCC-Pretreatment Reactor. XV Foro de Avances de la Industria de Refinación Mexico City, September 2009.

116. Камьянов В.Ф., Аксенов В.С., Титов В.И. Гетероатомные компоненты нефтей. Новосибирск : Наука, 1983. 238 с.

117. Camino G., Lomakin S.., Lazzari M. // Polymer (Guildf). 2001. Vol. 42, № 6. P. 2395–2402.

118. Chainet F., Le Meur L., Lienemann C.-P. et al. // Fuel. 2013. Vol. 111. P. 519–527.

119. Nadeina K.A., Kazakov M.O., Kovalskaya A.A. et al. Guard bed catalysts for silicon removal during hydrotreating of middle distillates // Catal. Today. 2019. Vol. 329. P. 53–62.

120. Grading innovation helps you deal with changing market requirements [Electronic resource]. 2019. URL: https://blog.topsoe.com/grading-innovation-helps-you-deal-with-changing-market-requirements (accessed: 19.11.2019).

121. Vaiss V.S., Fonseca C.G., Antunes F.P.N. et al. // J. Catal. 2020. Vol. 389. P. 578–591.

122. He H., Lu P., Wu L. et al. // Nanoscale Res. Lett. 2016. Vol. 11, № 1. P. 330.

123. Wang S., Tu J., Yuan Y. et al. // Phys. Chem. Chem. Phys. 2016. Vol. 18, № 4. P. 3204–3213.

124. Schmidt M., Rasmussen H. // Pet. Technol. Q. 2016. Vol. 21, № 2. P. 19–24.

125. Xiao T.-C., Su J.-X., Wang H.-T. et al. // Ind. Eng. Chem. Res. 2000. Vol. 39, № 10. P. 3679–3687.

126. Reynolds J.G. // Pet. Sci. Technol. 2001. Vol. 19, № 7/8. P. 979–1007.

127. Zhao X., Xu C., Shi Q. // Structure and Bonding. 2016. Vol. 168. P. 39–70.

128. Kobayashi S., Kushiyama S., Aizawa R. et al. // Ind. Eng. Chem. Res. 1987. Vol. 26, № 11. P. 2241–2245.

129. Hadebe S.W., Leckel D. // Energy and Fuels. 2013. Vol. 27, № 9. P. 5161–5167.

130. Joshi U., Schneider A. // Pet. Technol. Q. 2016. Vol. 21, № 1. P. 65–69.

131. Zeinalov E.B., Abbasov V.M., Alieva L.I. // Pet. Chem. 2009. Vol. 49, № 3. P. 185–192.

132. Robinson P.R., Dolbear G.E. // Springer Handbook of Petroleum Technology / Ed. by Chang Samuel Hsu, P.R. Robinson. 2017. P. 713–776.

133. Grading and Guard materials maximum catalyst protection and optimum pressure drop management [Electronic resource]. URL: https://cdn.digitalrefining.com/data/literature/file/736283926.pdf (accessed: 28.01.2020).

134. Gray M.R., Srinivasan N., Masliyah J.H. // Can. J. Chem. Eng. 2002. Vol. 80, № 3. P. 346–354.

135. Weber S. The structural integrity of insert parts of high pressure hydrotreating reactor // Dillinger Pressure Vessel Colloquium on 24th. Dillinger, 2003. P. 1–12.

136. Dunleavy J. // Platinum Met. Rev. 2005. Vol. 49, № 3. P. 156.

137. Perez M.J.L. et al. Avoiding unplanned reactor shutdowns // Pet. Technol. Q. 2019. Vol. 24, № 1. P. 47–53.

138. McCulloch D.C. Catalytic Hydrotreating in Petroleum Refining // Applied Industrial Catalysis. Elsevier, 1983. Vol. 1. P. 69–121.

139. Leliveld B., Toshima H. // Pet. Technol. Q. 2015. Vol. 20, № 1. P. 77–83.

140. How fouling abatement solutions can unlock millions of dollars per year from your reactor [Electronic resource]. URL: http://gpc-whitepapers.com/uploads/media/fouling_abatement_white_paper_FINAL.pdf (accessed: 19.01.2021).

141. Moyse B. Ring-shaped catalysts make the grade // Pet. Technol. Q. 2010. Vol. 15, № 2. P. 25–29.

142. Mik I.A., Klenov O.P., Kazakov M.O. et al. // Fuel. 2021. Vol. 285. Article 119149.

143. Carlson K., Foshee T. Capturing value through integrated improvements at the FCC-PT–FCC complex [Electronic resource]. URL: https://cdn.digitalrefining.com/data/articles/file/1002481-sheGBPGBP-juGBP-white-20.pdf (accessed: 19.01.2021).

144. Manna U. Ultra low sulfur HSD production - CENTERATM catalysts are key to unlock potential of hydrotreaters // International Conference on «Refining Chalenges — Way forward». New Delhi, India, 2012.

145. Надеина К.А. Новые подходы к синтезу высокоактивных и высокопрочных Co-Mo катализаторов гидроочистки : дис. … канд. хим. наук / Ин-т орган. химии им. Н.Д. Зелинского РАН. М., 2015.

146. Никульшин П.В. Молекулярный дизайн катализаторов гидроочистки на основе гетерополисоединений, хелатонов и зауглероженных носителей : дис. … д-ра хим. наук / Ин-т орган. химии им. Н.Д. Зелинского РАН. М., 2015.

147. «Роснефть» полностью перешла на катализаторы гидроочистки собственной разработки [Electronic resource]. URL: https://www.rosneft.ru/press/news/item/206721/.

148. «Газпромнефть – Каталитические системы» [Electronic resource]. URL: https://catalysts.gazprom-neft.ru/.

149. «Газпром нефть» успешно испытала на Омском НПЗ первый отечественный катализатор гидроочистки [Electronic resource]. URL: https://www.gazprom-neft.ru/press-center/news/gazprom-neft-uspeshno-ispytala-na-omskom-npz-pervyy-otechestvennyy-katalizator-gidroochistki/.

150. Battiston A. et al. New catalysts for low and medium pressure hydrotreating // Pet. Technol. Q. 2019. Vol. 24, № 3. P. 33–39.

151. Zeuthen P. A new generation of catalyst is born: TK-6001 HySwell [Electronic resource]. URL: https://cdn.digitalrefining.com/data/articles/file/1468570709.pdf (accessed: 19.01.2021).

152. Leliveld B., Slettenhaar B. CELESTIATM: a revolutionary new hydroprocessing catalyst providing ultra-high activity // Albemarle Catalyst Courier. 2019. № 89. P. 9–23.

153. Kelkar A. // Hydrocarb. Engineering. 2019. Vol. 24, № 9. P. 39–42.

154. Battiston A. Kinetic engine drives catalyst development // Pet. Technol. Q. 2016. Vol. 21, № 2. P. 35–41.

155. STAX TECHNOLOGY [Electronic resource]. URL: https://www.albemarle.com/businesses/refining-solutions/hydroprocessing-catalysts/stax-technology.

156. Get the best out of a hydrocracker unit with new EQUIFLOW® internal reactors [Electronic resource]. URL: https://www.axens.net/blog/business-news/get-the-best-out-of-a-hydrocracker-unit-with-new-equiflow-internal-reactors/ (accessed: 20.01.2021).

157. Filter trays vital to onstream streak [Electronic resource]. URL: https://cdn2.hubspot.net/hubfs/3433801/Content Library/Shell Filter Trays Vital To Onstream Streak Case Study (Shell Martinez).pdf (accessed: 20.01.2021).

158. Advancing pressure drop mitigation through collaboration [Electronic resource]. URL: http://gpc-whitepapers.com/uploads/media/UOP-Crystaphase-AdvancingPressureDropMitigationThroughCollaboration-FINAL.pdf (accessed: 20.01.2021).

159. Diekmann E. Catalysis q&a: What impact does catalyst packing have on unit performance and how do we achieve the best packing arrangement? // Pet. Technol. Q. 2018. Vol. 23, № 2. P. 14.

160. More efficient catalyst loading [Electronic resource]. 2017. URL: https://cdn.digitalrefining.com/data/articles/file/433538640.pdf (accessed: 26.01.2021).


Review

For citations:


Budukva S.V., Uvarkina D.D., Klimov O.V., Noskov A.S. Deactivation of hydrotreating catalysts (A review). Kataliz v promyshlennosti. 2022;22(3):38-65. (In Russ.) https://doi.org/10.18412/1816-0387-2022-3-38-65

Views: 737


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)