Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

The effect of testing conditions on the time of establishing a steady-state activity of the catalysts for the second hydrocracking step

https://doi.org/10.18412/1816-0387-2023-2-73-82

Abstract

Catalysts for the second hydrocracking step were tested under different conditions in order to reduce the time of establishing their steadystate activity. The tests were carried out at a laboratory bench under the conditions close to industrial operation and typical of the second hydrocracking step. The introduction of an additional step at the onset of testing with the increased temperature and feed space velocity as well as the use of a dimethyl disulfide solution in decane as a sulfurization mixture were shown to considerably reduce the duration of experiment. Conditions of the preliminary step were selected so as to preserve the catalyst selectivity toward the diesel fraction.

About the Authors

I. S. Golubev
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


P. P. Dik
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


M. O. Kazakov
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


O. V. Klimov
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


A. S. Noskov
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


References

1. Speight J.G. The Refinery of the Future. 2011. https://doi.org/10.1016/B978-0-8155-2041-2.10009-8.

2. Singh S.R., Chaturvedi A., Dori L., Ranjan A., Lodhi S.K., Singh A., Neeraj G. // Int. J. Sci. Res. Rev. 2013. Vol. 2. P. 27–35.

3. Parkash S. Refining Processes Handbook. 2003. P. 62–108. https://doi.org/10.1016/B978-075067721-9/50003-7.

4. Dahlberg A.J., Mukherjee U.K. // Encyclopaedia of Hydrocarbons. 2005. Vol. II. P. 273 – 297.

5. Francis J., Guillon E., Bats N., Pichon C., Corma A., Simon L.J. // Appl. Catal. A: Gen. 2011. Vol. 409–410. P. 140–147. https://doi.org/10.1016/j.apcata.2011.09.040.

6. Gutberlet L.C., Bertolacini R.J., Kukes S.G. // Energy and Fuels. 1994. Vol. 8. P. 227–233. https://doi.org/10.1021/ef00043a035.

7. Dik P.P., Klimov O.V., Koryakina G.I., Leonova K.A., Pereyma V.Y., Budukva S.V., Gerasimov E.Y., Noskov A.S. // Catal. Today. 2014. Vol. 220–222. P. 124–132. https://doi.org/10.1016/j.cattod.2013.07.004.

8. De Jong K.P., Zečević J., Friedrich H., De Jongh P.E., Bulut M., Van Donk S., Kenmogne R., Finiels A., Hulea V., Fajula F. // Angew. Chemie. 2010. Vol. 49. P. 10074–10078. https://doi.org/10.1002/anie.201004360.

9. Ali M.A., Tatsumi T., Masuda T. // Appl. Catal. A: Gen. 2002. Vol. 233. P. 77–90. https://doi.org/10.1016/S0926-860X(02)00121-7.

10. Vogt E.T.C., Gareth W.T., Chowdhury A.D., Weckhuysen B.M. // Adv. Catal. 2015. Vol. 58. P. 143–314. https://doi.org/10.1016/bs.acat.2015.10.001.

11. Dik P.P., Danilova I.G., Golubev I.S., Kazakov M.O., Nadeina K.A., Budukva S.V., Pereyma V.Y., Ivanova I.I., Bok T.O., Klimov O.V., Dobryakova I.V., Prosvirin I.P., Gerasimov E.Y., Knyazeva E.E., Noskov A.S. // Fuel. 2019. Vol. 237. P. 178–190. https://doi.org/10.1016/j.fuel.2018.10.012.

12. Sullivan R.F., Boduszynski M.M., Fetzer J.C. // Energy and Fuels. 1989. Vol. 3. P. 603–612. https://doi.org/10.1021/ef00017a013.

13. Yan T.Y. // Industrial & Engineering Chemistry Product Research and Development. 1983. Vol. 22. P. 154–160.

14. Yan T.Y. // Ind. Eng. Chem. Res. 1989. Vol. 28 P. 1463–1466. https://doi.org/10.1021/ie00094a004.

15. Yin C., Wang Y., Xue S., Liu H., Li H., Liu C. // Fuel. 2016. Vol. 175. P. 13–19. https://doi.org/10.1016/j.fuel.2016.02.029.

16. Berhault G., Perez De la Rosa M., Mehta A., Yácaman M.J., Chianelli R.R. // Appl. Catal. A: Gen. 2008. Vol. 345 P. 80–88. https://doi.org/10.1016/j.apcata.2008.04.034.

17. Pereyma V.Y., Klimov O.V., Prosvirin I.P., Gerasimov E.Y., Yashnik S.A., Noskov A.S. // Catal. Today. 2018. Vol. 305 P. 162–170. https://doi.org/10.1016/j.cattod.2017.07.019.

18. Sau M., Basak K., Manna U., Santra M., Verma R.P. // Catal. Today. 2005. Vol. 109. P. 112–119. https://doi.org/10.1016/j.cattod.2005.08.007.

19. Kazakov M.O., Nadeina K.A., Danilova I.G., Dik P.P., Klimov O.V., Pereyma V.Y., Gerasimov E.Y., Dobryakova I.V., Knyazeva E.E., Ivanova I.I., Noskov A.S. // Catal. Today. 2018. Vol. 305. P. 117–125. https://doi.org/10.1016/j.cattod.2017.08.048.

20. Kazakov M.O., Nadeina K.A., Danilova I.G., Dik P.P., Klimov O.V., Pereyma V.Yu., Paukshtis E.A., Golubev I.S., Prosvirin I.P., Gerasimov E.Yu., Dobryakova I.V., Knyazeva E.E., Ivanova I.I., Noskov A.S. // Catal. Today. 2019. Vol. 329. P. 108–115. https://doi.org/10.1016/j.cattod.2019.01.003.

21. Marafi M., Stanislaus A., Furimsky E. Handbook of Spent Hydroprocessing Catalysts. 2017. https://doi.org/10.1016/B978-0-444-63881-6.00004-4.

22. Mendes P.S.F., Silva J.M., Ribeiro M.F., Bouchy C., Daudin A. // J. Ind. Eng. Chem. 2019. Vol. 71. P. 167–176. https://doi.org/10.1016/j.jiec.2018.11.019.

23. Cui G., Wang J., Fan H., Sun X., Jiang Y., Wang S., Liu D., Gui J. // Fuel Process. Technol. 2011. Vol. 92. P. 2320–2327. https://doi.org/10.1016/j.fuproc.2011.07.020.


Review

For citations:


Golubev I.S., Dik P.P., Kazakov M.O., Klimov O.V., Noskov A.S. The effect of testing conditions on the time of establishing a steady-state activity of the catalysts for the second hydrocracking step. Kataliz v promyshlennosti. 2023;23(2):73-82. (In Russ.) https://doi.org/10.18412/1816-0387-2023-2-73-82

Views: 259


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)