

Chrome aluminum propane dehydrogenation catalyst, prepared by a modified coprecipitation
Abstract
There is method for making of propane dehydrogenation chrome aluminum catalyst, which increases the activity and thermal stability of the catalyst compared with the currently known catalysts. For the first time the modified coprecipitation method is used for chrome aluminum catalyst preparation, in which a suspension of chromium and aluminum hydroxides are subjected of high temperature treatment (550 °C). The proposed method is simple, reducing the number of catalyst preparation stages. Using a complex of physical and chemical methods, we studied the phase composition, texture of the catalyst, the formation and properties of surface-active forms, depending on the catalyst preparation conditions. Selected conditions of catalyst preparation provide a high surface area and a strong connection between surface forms of chromium and support that prevents the formation of catalytically inactive forms of α-Cr2O3 in the process of calcination. We synthesized and studied laboratory samples of chrome aluminum catalyst with different chromium content (2,8–11,3 wt.%). Key indicators (the propane conversion and propylene selectivity, resistance to coke formation) of the catalyst are not inferior to the most active samples well-known from literature, also the catalyst have high activity at low chromium content (2,8–5,5 wt.%). The developed method is protected by patent of the Russian Federation and recommended for improvement of industrial technology.
About the Authors
L. P. DidenkoRussian Federation
A. M. Kolesnikova
Russian Federation
M. S. Voronetsky
Russian Federation
V. I. Savchenko
Russian Federation
I. A. Domashnev
Russian Federation
L. A. Sementsova
Russian Federation
References
1. Пат. 1366200 (РФ). Способ дегидрирования парафиновых углеводородов С3—С5 / Г.Р. Котельников, Р.К. Михайлов, Р. Йецци и др.
2. Котельников Г.Р., Беспалов В.П. // Катализ в промышленности. 2007. № 2. С. 59.
3. Тихов С.Ф., Фенелонов В.Б., Садыков В.А. и др. // Кинетика и катализ. 2000. Т. 41. № 6. С. 907.
4. Тихов С.Ф., Романенко В.Е., Садыков В.А. и др. Пористые композиты на основе оксид-алюминиевых керметов (синтез и свойства). Новосибирск: Изд-во СО РАН. 2004.
5. Пахомов Н.А., Тихов С.Ф., Беспалко Ю.Н. и др. // Мембраны. Серия Критические технологии. 2006. № 1. С. 29.
6. Молчанов В.В., Исупова Л.А., Пахомов Н.А., Кашкин В.Н. // Каталитический бюллетень. 2009. № 1(49).
7. Weckhuysen B.M., Schoonheydt R.A. // Catal. Today. 1999. Vol. 51. P. 223.
8. Puurunen R.L., Weckhuysen B.M. // J. Catal. 2002. Vol. 210. P. 418.
9. Kytokovi A., Jacobs J.P., Hakuli A. et al. // J. Catal. 1996. Vol. 162. P. 190.
10. Пат. 2318593 (РФ). Способ получения катализатора для дегидрирования углеводородов и катализатор, полученный этим способом / С.М. Алдошин, И.Л. Балихин, В.И. Берестенко и др. 2008.
11. Крылов О.В. Гетерогенный катализ. М.: ИКЦ «Академкнига», 2004.
12. De Rossi S., Ferraris G., Fremiotti S. et al. // J. Catal. 1994. Vol. 148. P. 36.
13. De Rossi S., Pia Casaletto M., Ferraris G. et al. // Appl. Catal. A. 1998. Vol. 167. P. 257.
14. Brucker A., Radnik J., Hoang D.-L. et al. // Catal. Lett. 1999. Vol. 60. P. 183.
15. Weckhuysen B.M., Wachs I.E., Schoonheydt R.A. // Chem. Rev. 1996. Vol. 96. P. 3327.
16. Morterra C., Magnacca G. // Catal. Today 1996. Vol. 27. P. 497.
17. Shivaji Thapliyal, Goutam Deo // Bull. Catal.Soc. India. 2003. Vol. 2. P. 29.
18. Hakuli A., Kytokivi A., Krause A.O. et al. // J. Catal. 1996. Vol. 161. P. 393.
19. Weckhuysen B.M., Bensalem A., Schoonheydt R.A. // J. Chem. Soc., Faraday Trans. 1998. Vol. 94. P. 2011.
Review
For citations:
Didenko L.P., Kolesnikova A.M., Voronetsky M.S., Savchenko V.I., Domashnev I.A., Sementsova L.A. Chrome aluminum propane dehydrogenation catalyst, prepared by a modified coprecipitation. Kataliz v promyshlennosti. 2011;(2):7-14. (In Russ.)