Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Efficient catalysts based on substitutional solid solutions and intermetallic compounds of palladium for acetylene selective hydrogenation to ethylene

https://doi.org/10.18412/1816-0387-2023-6-17-51

Abstract

The features of the catalytic action of bimetals such as Pd-Ag, Pd-Cu, Pd-Au, Pd-Ga, Pd-Zn on the conversion of acetylene to ethylene are considered. Two factors that determine the influence of the second metal on palladium – the ensemble effect (geometric effect) and the ligand effect (electronic effect) were taken into account. The relationship between the parameters obtained using calculation methods and experimentally established characteristics are shown. The calculated parameters are thermodynamic and kinetic parameters of the adsorption interaction of the main components of the reaction medium and intermediates with the catalyst surface, the structure of active ensembles and the experimental ones are the structural parameters of bimetallic phases, the electronic state of their components, and catalytic properties of bimetals. The examples illustrating the possibility of the modifier atoms entering into active ensembles and the participation of the sites formed from modifier atoms in the catalysis of individual elementary stages are presented.

About the Authors

D. A. Shlyapin
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


D. V. Yurpalova
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


T. N. Afonasenko
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


V. L. Temerev
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


A. V. Lavrenov
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


References

1. Заббаров Р.Р., Хамитов А.Р. // Российская наука в современном мире. – 2021. – С. 111-113.

2. Rodriguez J.A. // Surf. Sci. Rep. 1996. V. 24. Iss. 7-8. P. 223-287. https://doi.org/10.1016/0167-5729(96)00004-0

3. Yi C.W., Luo K., Wei T., Goodman D.W. // J. Phys. Chem. B. 2005. V. 109. №. 39. P. 18535-18540. https://doi.org/10.1021/jp053515r

4. Liao F., Lo T.W.B., Tsang S.C.E. // Chem. Cat. Chem. 2015. V. 7. Iss. 14. P. 1998-2014. https://doi.org/10.1002/cctc.201500245

5. Bukhtiyarov A.V., Panafidin M.A., Chetyrin I.A., Prosvirin I.P., Mashkovsky I.S., Smirnova N.S., Markov P.V., Zubavichus Y.V., Stakheev A.Yu., Bukhtiyarov V.I. //Appl. Surf. Sci. 2020. V. 525. P. 146493. https://doi.org/10.1016/j.apsusc.2020.146493

6. Kovnir K., Armbrüster M., Teschner D., Venkov T.V., Jentoft F.C., Knop-Gericke A., Grin Yu., Schlögl R. // Sci. Technol. Adv. Mat. 2007. V. 8. Iss. 5. P. 420-427. https://doi.org/10.1016/j.stam.2007.05.004

7. Studt F., Abild-Pedersen F., Bligaard T., Sørensen R.Z., Christensen C.H., Nørskov, J.K. //Science. 2008. V. 320. Iss. 5881. P. 1320-1322. https://doi.org/10.1126/science.1156660

8. Шляпин Д.А. , Глыздова Д.В. , Афонасенко Т.Н. , Темерев В.Л. , Цырульников П.Г. // Кинетика и катализ. 2019. Т.60. №4. С.479-485. https://doi.org/10.1134/S0453881119040208

9. Глыздова Д.В. , Смирнова Н.С. , Леонтьева Н.Н. , Герасимов Е.Ю. , Просвирин И.П. , Вершинин В.И. , Шляпин Д.А. , Цырульников П.Г. // Кинетика и катализ. 2017. Т.58. №2. С.152-158. https://doi.org/10.7868/S0453881117020058

10. Шляпин Д.А., Глыздова Д.В., Афонасенко Т.Н., Темерев В.Л., А.В. Лавренов А.В. // Катализ в промышленности. 2022. Т.22. №6. С.51-67 https://doi.org/10.18412/1816-0387-2022-6-51-67

11. Yang Y., Wang W., Liu Y., Wang F., Zhang Z., Lei Z. // Int. J. Hydrogen Energy. 2015. V. 40. P. 2225-2230. https://doi.org/10.1016/j.ijhydene.2014.12.054

12. Yin Z., Zhang Y., Chen K., Li J., Li W., Tang P., Zhao H., Zhu Q., Bao X., Ma D. // Sci. Rep. 2014. V. 4. P. 4288. https://doi.org/10.1038/srep04288

13. Benipal N., Qi J., Liu Q., Li W. // Appl. Catal. B: Env. 2017. V. 210. P. 121–130. https://doi.org/10.1016/j.apcatb.2017.02.082

14. Li R., Yao W., Jin Y., Jia W., Chen X., Chen J., Zheng J., Hu Y., Han D., Zhao J. // Chem. Eng. J. 2018. V. 351. P. 995–1005. https://doi.org/10.1016/j.cej.2018.06.146

15. Rassolov A.V., Krivoruchenko D.S., Medvedev M.G., Mashkovsky I.S., Stakheev A.Y., Svitanko I.V. // Mendelev. Commun. 2017. V. 27. Iss. 6. P. 615–617. https://doi.org/10.1016/j.mencom.2017.11.026

16. Ravanchi M.T., Sahebdelfar S. // Appl. Catal. A: Gen. 2016. V. 525. P. 197–203. https://doi.org/10.1016/j.apcata.2016.07.014

17. Gao X., Zhou Y., Jing F., Luo J., Huang Q., Chu W. // Chinese J. Chem. 2017. V. 35. Iss. 6. P. 1009–1015. https://doi.org/10.1002/cjoc.201600865

18. Liu Y., Zhao J., He Y., Feng J., Wu T., Li D. // J. Catal. 2017. V. 348. P. 135-145 https://doi.org/10.1016/j.jcat.2017.02.020

19. He Y., Liu Y., Yang P., Du Y., Feng J., Cao X., Yang J., Li D. //J. Catal. 2015. V. 330. P. 61-70. https://doi.org/10.1016/j.jcat.2015.06.017

20. Grünert W., Brückner A., Hofmeister H., Claus P. // J. Phys. Chem. B. 2004. V. 108. Iss. 18. P. 5709-5717. https://doi.org/10.1021/jp049855e

21. Claus P., Hofmeister H. // J. Phys. Chem. B. 1999. V. 103. Iss. 14. P. 2766-2775. https://doi.org/10.1021/jp983857f

22. Bron M., Teschner D., Knop-Gericke A., Jentoft F.C., Krohnert J., Hohmeyer J., Volckmar C., Steinhauer B., Schlogl R., Claus P. // Phys. Chem. Chem. Phys. 2007. V. 9. Iss. 27. P. 3559-3569. https://doi.org/10.1039/B701011G

23. Mohammad A.B., Yudanov I.V., Lim K.H., Neyman K.M., Rösch N. // J. Phys. Chem. C. 2008. V. 112. Iss. 5. P. 1628-1635. https://doi.org/10.1021/jp0765190

24. Karakhanov E.A., Maximov A.L., Zolotukhina A.V., Yatmanova N., Rosenberg E. // Appl. Organomet. Chem. 2015. V. 29. P. 777–784. https://doi.org/10.1002/aoc.3367

25. González S., Neyman K.M., Shaikhutdinov S., Freund H.-J., Illas F. // J. Phys. Chem. C. 2007. V. 111. P. 6852–6856. https://doi.org/10.1021/jp071584v

26. Wang W., Cao G. // J. Nanopart. Res. 2007. V. 9. P. 1153–1161. https://doi.org/10.1007/s11051-006-9203-5

27. Balerna A., Deganello G., Liotta L., Longo A., Martorana A., Meneghini C., Mobilio S., Venezia A.M. // J. Non-Cryst. Solids. 2001. V. 293–295. P. 682–687. https://doi.org/10.1016/S0022-3093(01)00771-2

28. Allison E.G., Bond G.C. // Catal. Rev. 1972. V. 7. Iss. 2. P. 233–289. https://doi.org/10.1080/01614947208062259

29. Лякишев Н.П. Диаграммы состояния двойных металлических систем: Справочник: В 3 т.: Т. 1 / Под общ. ред. Н.П. Лякишева. – М.: Машиностроение, 1996. – С. 992.

30. Denton A.R., Ashcroft N.W. // Phys. Rev. A. 1991. V. 43. Iss. 6. P. 3161–3164. https://doi.org/10.1103/PhysRevA.43.3161

31. Pei G.X., Liu X., Wang A., Lee A.F., Isaacs M.A., Li L., Pan X., Yang X., Wang X., Tai Z., Wilson K., Zhang T. // ACS Catal. 2015. V. 5. Iss. 6. P. 3717–3725. https://doi.org/10.1021/acscatal.5b00700

32. Kim W.J., Moon S.H. // Catal. Today. 2012. V. 185. Iss. 1. P. 2–16. https://doi.org/10.1016/j.cattod.2011.09.037

33. Рассолов А.В., Марков П.В., Брагина Г.О., Баева Г.Н., Криворученко Д.С., Машковский И.С., Якушев И.А., Варгафтик М.Н., Стахеев А.Ю. // Кинетика и катализ. 2016. Т. 57. № 6. С. 865–873. https://doi.org/10.1134/S0023158416060112

34. Huang D.C., Chang K.H., Pong W.F., Tseng P.K., Hung K.J., Huang W.F. // Catal. Lett. 1998. V. 53. Iss. 3–4. P. 155–159. https://doi.org/10.1023/A:1019022326090

35. Ponec V. // Appl. Catal. A: Gen. 2001. V. 222. Iss. 1–2. P. 31–45. https://doi.org/10.1016/S0926-860X(01)00828-6

36. Barbieri P.F., De Siervo A., Carazzolle M.F., Landers R., Kleiman G.G. // J. Electron Spectrosc. 2004. V. 135. Iss. 2–3. P. 113–118. https://doi.org/10.1016/j.elspec.2004.02.121

37. Khan N.A., Shaikhutdinov S., Freund H.J. // Catal. Lett. 2006. V. 108. Iss. 3. P. 159-164. https://doi.org/10.1007/s10562-006-0041-y

38. Эллерт О.Г., Цодиков М.В., Николаев С.А., Новоторцев В.М. // Успехи химии. 2014. Т. 83. № 8. С. 718-732. https://doi.org/10.1070/RC2014v083n08ABEH004432

39. Tang J., Deng L., Deng H., Xiao S., Zhang X., Hu W. // J. Phys. Chem. C. 2014. V. 118. Iss. 48. P. 27850–27860. https://doi.org/10.1021/jp507710k

40. Hewage J.W. // Mater. Chem. Phys. 2016. V. 174. P. 187–194. https://doi.org/10.1016/j.matchemphys.2016.02.074

41. Стахеев А.Ю., Смирнова Н.С., Марков П.В., Баева Г.Н., Брагина Г.О., Рассолов А.В., Машковский И.С. // Кинетика и катализ. 2018. Т. 59. № 5. С. 601-609. https://doi.org/10.1134/S0023158418050154

42. Zhao M., Sloof W.G., Böttger A.J. // Int. J. Hyd. En. 2018. V. 43. № 4. P. 2212–2223. https://doi.org/10.1016/j.ijhydene.2017.12.039

43. Николаев С.А., Занавескин Л.Н., Смирнов В.В., Аверьянов В.А., Занавескин К.Л. // Успехи химии. 2009. Т. 78. №. 3. С. 248-265. https://doi.org/10.1070/RC2009v078n03ABEH003893

44. Teschner D., Borsodi J., Wootsch A., Révay Z., Havecker M., Knop-Gericke A., Jackson S. D. Schlogl R. // Sci. 2008. V. 320. Iss. 5872. P. 86-89. https://doi.org/10.1126/science.115520

45. Tiruppathi P., Low J.J., Chan A.S.Y., Bare S.R., Meyer R.J. // Catalysis Today. 2011. V. 165. Iss. 1. P. 106–111. https://doi.org/10.1016/j.cattod.2011.02.029

46. Phillips J., Auroux A., Bergeret G., Massardier J., Renouprez A. // J. Phys. Chem. 1993. V. 97. Iss. 14. P. 3565-3570. https://doi.org/10.1021/j100116a021

47. Jin Y., Datye A.K., Rightor E., Gulotty R., Waterman W., Smith M., Holbrook M., Maj J., Blackson J. // J. Catal. 2001. V. 203. Iss. 2. P. 292-306. https://doi.org/10.1006/jcat.2001.3347

48. Zea H., Lester K., Datye A. K., Rightor E., Gulotty R., Waterman W., Smith M. // Appl. Catal. A Gen. 2005. V. 282. Iss. 1-2. P. 237-245. https://doi.org/10.1016/j.apcata.2004.12.026

49. Praserthdam P., Ngamsom B., Bogdanchikova N., Phatanasri S., Pramotthana M. // Appl. Catal. A: Gen. 2002. V. 230. Iss. 1-2. P. 41-51 https://doi.org/10.1016/S0926-860X(01)00993-0

50. Ngamsom B., Bogdanchikova N., Borja M. A., Praserthdam P. // Catal. Comm. 2004. V. 5. Iss. 5. P. 243-248. https://doi.org/10.1016/j.catcom.2004.02.007

51. Lamb R.N., Ngamsom B., Trimm D.L., Gong B., Silveston P.L., Praserthdam P. // Appl. Catal. A: Gen. 2004. V. 268. Iss. 1-2. P. 43-50. https://doi.org/10.1016/j.apcata.2004.03.041

52. Zhang Q., Li J., Liu X., Zhu Q. //Appl. Catal. A: Gen. 2000. V. 197. Iss. 2. P. 221-228. https://doi.org/10.1016/S0926-860X(99)00463-9

53. Pachulski A., Schödel R., Claus P. // Appl. Catal. A: Gen. 2011. V. 400. Iss. 1-2. P. 14-24 https://doi.org/10.1016/j.apcata.2011.03.019

54. Lee J.H., Kim S.K., Ahn I.Y., Kim W J., Moon S.H. // Catal. Comm. 2011. V. 12. Iss. 13. P. 1251-1254. https://doi.org/10.1016/j.catcom.2011.04.015

55. Khan N.A., Uhl A., Shaikhutdinov S., Freund H.J. // Surf. Sci. 2006. V. 600. Iss. 9. P. 1849-1853. https://doi.org/10.1016/j.susc.2006.02.016

56. Christensen A., Ruban A.V., Stoltze P., Jacobsen K.W., Skriver H.L., Norskov J.K., Besenbacher F. // Phys. Rev. B. 1997. V. 56. Iss. 10. P. 5822. https://doi.org/10.1103/PhysRevB.56.5822

57. Sheth P.A., Neurock M., Smith C.M. // J. Phys. Chem. B. 2005. V. 109. Iss. 25. P. 12449-12466. https://doi.org/10.1021/jp050194a

58. Mei D., Neurock M., Smith C.M. // J. Catal. 2009. V. 268. Iss. 2. P. 181-195. https://doi.org/10.1016/j.jcat.2009.09.004

59. Глыздова Д.В., Смирнова Н.С., Леонтьева Н.Н., Герасимов Е.Ю., Просвирин И.П., Вершинин В.И., Шляпин Д.А., Цырульников П.Г. // Кинетика и катализ. 2017. Т.58. № 2. С.152-158. https://doi.org/10.1134/S0023158417020057

60. Glyzdova D.V., Vedyagin A.A., Tsapina A.M., Kaichev V.V., Trigub A.L., Trenikhin M.V., Shlyapin D.A., Tsyrulnikov P.G., Lavrenov A.V. // Appl. Catal. A: Gen. 2018. V.563. P.18-27. https://doi.org/10.1016/j.apcata.2018.06.029

61. Glyzdova D.V., Afonasenko T.N., Khramov E.V., Leont’eva N.N., Trenikhin M.V., Kremneva A.M., Shlyapin D.A. // Mol. Catal. 2021. V. 511. P. 111717:1-9. https://doi.org/10.1016/j.mcat.2021.111717

62. Huang W., Pyrz W., Lobo R.F., Chen J.G. // Appl. Catal. A: Gen. 2007. V. 333. Iss. 2. P. 254-263. https://doi.org/10.1016/j.apcata.2007.09.017

63. Liu J., Lan L., Li R., Liu X., Wu C. // Int. J. Hydrogen Energ. 2016. V. 41. Iss. 2. P. 951–958. https://doi.org/10.1016/j.ijhydene.2015.10.144

64. Gholinejad M., Khosravi F., Afrasi M., Sansano J.M., Nájera C. // Catal. Sci. Technol. 2021. V. 11. Iss. 8. P. 2652-2702. https://doi.org/10.1039/D0CY02339F

65. Fodor A., Hell Z., Pirault-Roy L. // Appl. Catal. A: Gen. 2014. V. 484. P. 39-50. https://doi.org/10.1016/j.apcata.2014.07.002

66. Nasrollahzadeh M., Jaleh B., Ehsani A. // New J. Chem. 2015. V. 39. Iss. 2. P. 1148-1153. https://doi.org/10.1039/C4NJ01788A

67. Rossy C., Majimel J., Delapierre M.T., Fouquet E., Felpin F.X. // J. Organomet. Chem. 2014. V. 755. P. 78-85. https://doi.org/10.1016/j.jorganchem.2014.01.006

68. Rassolov A.V., Baeva G.N., Mashkovsky I.S., Stakheev A.Y. // Mendelev. Commun. 2018. V. 28. Iss. 5. P. 538-540. https://doi.org/10.1016/j.mencom.2018.09.030

69. Theologides C.P., Olympiou G.G., Savva P G., Kapnisis K., Anayiotos A., Costa C.N. // Appl. Catal. B: Env. 2017. V. 205. P. 443-454. https://doi.org/10.1016/j.apcatb.2016.12.055

70. Ye T., Durkin D.P., Banek N.A., Wagner M.J., Shuai D. // ACS Appl. Mater. Interfaces. 2017. V. 9. Iss. 33. P. 27421-27426. https://doi.org/10.1021/acsami.7b09192

71. Jung S., Bae S., Lee W. // Environ. Sci. Technol. 2014. V. 48. Iss. 16. P. 9651-9658. https://doi.org/10.1021/es502263p

72. Śrębowata A., Lisowski W., Sobczak J.W., Karpiński Z. // Catal. Today. 2011. V. 175. Iss. 1. P. 576-584. https://doi.org/10.1016/j.cattod.2011.03.038

73. Bonarowska M., Machynskyy O., Łomot D., Kemnitz E., Karpiński Z. // Catal. Today. 2014. V. 235. P. 144-151. https://doi.org/10.1016/j.cattod.2014.01.029

74. Hina R., Arafa I., Al-Khateeb F. // React. Kinet. Mech. Catal. 2016. V. 41. Iss. 1. С. 29-38. https://doi.org/10.3184/146867816X14490551502250

75. Liu L., Fan F., Jiang Z., Gao X., Wei J., Fang T. // J. Phys. Chem. C. 2017. V. 121. Iss. 47. P. 26287-26299. https://doi.org/10.1021/acs.jpcc.7b06166

76. Nie X., Jiang X., Wang H., Luo W., Janik M.J., Chen Y., Guo X., Song C. // ACS Catal. 2018. V. 8. Iss. 6. P. 4873-4892. https://doi.org/10.1021/acscatal.7b04150

77. Jiang X., Nie X., Wang X., Wang H., Koizumi N., Chen Y., Guo X., Song C. // J. Catal. 2019. V. 369. P. 21-32. https://doi.org/10.1016/j.jcat.2018.10.001

78. Wang F., Lu G. // Int. J. Hydrogen Energ. 2010. V. 35. Iss. 13. P. 7253-7260. https://doi.org/10.1016/j.ijhydene.2009.12.186

79. Nikolaev S.A., Golubina E.V., Shilina M.I. //Appl. Catal. B: Env. 2017. V. 208. P. 116-127. https://doi.org/10.1016/j.apcatb.2017.02.038

80. Liu J., Fan X., Sun C. Q., Zhu W. // Appl. Catal. A: Gen. 2017. V. 538. P. 66-73. https://doi.org/10.1016/j.apcata.2017.03.019

81. Shit S.C., Singuru R., Pollastri S., Joseph B., Rao B.S., Lingaiah N., Mondal J. // Catal. Sci. Technol. 2018. V. 8. Iss. 8. P. 2195-2210. https://doi.org/10.1039/C8CY00325D

82. Hu C., Zhai X., Zhao Y., Bian K., Zhang J., Qu L., Zhang H., Luo H. // Nanoscale. 2014. V. 6. Iss. 5. P. 2768-2775. https://doi.org/10.1039/C3NR05722D

83. Pereira M.M., Noronha F.B., Schmal M. // Catal. Today. 1993. V. 16. Iss. 3-4. P. 407-415. https://doi.org/10.1016/0920-5861(93)80080-K

84. Li M., Shen J. //Thermochim. Acta. 2001. V. 379. Iss. 1-2. P. 45-50. https://doi.org/10.1016/S0040-6031(01)00600-1

85. Hofmann T., Yu T.H., Folse M., Weinhardt L., Bar M., Zhang Y., Merinov B.V., Myers D.J., Goddard W.A., Heske C. // J. Phys. Chem. C. 2012. V. 116. Iss. 45. P. 24016-24026. https://doi.org/10.1021/jp303276z

86. Hu S., Scudiero L., Ha S. // Electrochemistry communications. 2014. V. 38. P. 107-109. https://doi.org/10.1016/j.elecom.2013.11.010

87. Gunji T., Ochiai H., Ohira T., Liu Y., Nakajima Y., Matsumoto, F. // Chem. Mater. 2020. V. 32. Iss. 16. P. 6855-6863. https://doi.org/10.1021/acs.chemmater.0c01137

88. Ilinitch O.M., Cuperus F.P., Nosova L.V., Gribov E.N. // Stud. Surf. Sci. Catal. 2000. V. 130. P. 443-448. https://doi.org/10.1016/S0167-2991(00)80997-0

89. Lambert S., Heinrichs B., Brasseur A., Rulmont A., Pirard J.P. // Appl. Catal. A: Gen. 2004. V. 270. Iss. 1-2. P. 201-208. https://doi.org/10.1016/j.apcata.2004.05.005

90. Носова Л.В., Зайковский В.И., Калинкин А.В., Талзи Е.П., Паукштис Е.А., Рындин Ю.А. // Кинетика и катализ. 1995. Т. 36. № 3. С. 362-369.

91. Molenbroek A.M., Haukka S., Clausen B.S. // J. Phys. Chem. B. 1998. V. 102. Iss. 52. P. 10680-10689. https://doi.org/10.1021/jp9822081

92. Ball M.R., Rivera-Dones K.R., Gilcher E.B., Ausman S.F., Hullfish C.W., Lebrón E.A., Dumesic J.A. // ACS Catal. 2020. V. 10. Iss. 15. P. 8567-8581. https://doi.org/10.1021/acscatal.0c01536

93. Kim S.K., Lee J.H., Ahn I.Y., Kim W.J., Moon S.H. // Appl. Catal. A: Gen. 2011. V. 401. Iss. 1-2. P. 12-19. https://doi.org/10.1016/j.apcata.2011.04.048

94. Cao X., Mirjalili A., Wheeler J., Xie W., Jang B.W.L. //Front. Chem. Sci. Eng. 2015. V. 9. Iss. 4. P. 442-449. https://doi.org/10.1007/s11705-015-1547-x

95. Niu J., Liu H., Jin Y., Fan B., Qi W., Ran J. // Int. J. Hyd. En. 2022. V. 47. Iss. 15. 19. P. 9183-9200 https://doi.org/10.1016/j.ijhydene.2022.01.021

96. Natesakhawat S., Lekse J.W., Baltrus J.P., Ohodnicki Jr P.R., Howard B.H., Deng X., Matranga C. //Acs Catal. 2012. V. 2. Iss. 8. P. 1667-1676. https://doi.org/10.1021/cs300008g

97. Liu C., Yang B., Tyo E., Seifert S., De Bartolo J., von Issendorff B., Zapol P., Vajda S., Curtiss L.A. // J. Am. Chem. Soc. 2015. V. 137. Iss. 27. P. 8676-8679. https://doi.org/10.1021/jacs.5b03668

98. Liu S., Niu Y., Wang Y., Chen J., Quan X., Zhang X., Zhang B. // Chem. Commun. 2020. V. 56. Iss. 47. P. 6372-6375. https://doi.org/10.1039/D0CC01889A

99. Fernandez-Garcia M., Conesa J.C., Clotet A., Ricart J.M., López N., Illas F. // J. Phys. Chem. B. 1998. V. 102. Iss. 1. P. 141-147. https://doi.org/10.1021/jp971973x

100. Kyriakou G., Boucher M.B., Jewell A.D., Lewis E.A., Lawton T.J., Baber A.E., Tierney H.L., Flytzani-Stephanopoulos M., Sykes E.C.H. //Science. 2012. V. 335. Iss. 6073. P. 1209-1212. https://doi.org/10.1126/science.1215864

101. Mc Cue A.J., Mc Ritchie C.J., Shepherd A.M., Anderson J.A. // J. Catal. 2014. V. 319. P. 127-135. https://doi.org/10.1016/j.jcat.2014.08.016

102. Friedrich M., Villaseca S. A., Szentmiklósi L., Teschner D., Armbrüster M. // Materials. 2013. V. 6. Iss. 7. P. 2958-2977. https://doi.org/10.3390/ma6072958

103. Mc Cue A.J., Anderson J.A. // Front. Chem. Sci. Eng. 2015. V. 9. Iss. 2. P. 142-153. https://doi.org/10.1007/s11705-015-1516-4

104. Mc Cue A.J., Shepherd A.M., Anderson J.A. // Catal. Sci. Technol. 2015. V. 5. Iss. 5. P. 2880-2890. https://doi.org/10.1039/C5CY00253B

105. Zhang R., Xue M., Wang B., Ling L. // Appl. Surf. Sci. 2019. V. 481. P. 421-432. https://doi.org/10.1016/j.apsusc.2019.03.006

106. Pei G., Liu X., Chai M., Wang A., Zhang T. // Chinese J. Catal. 2017. V. 38. Iss. 9. P. 1540-1548. https://doi.org/10.1016/S1872-2067(17)62847-X

107. Liu Y., He Y., Zhou D., Feng J., Li D. // Catal. Sci. Technol. 2016. V. 6. Iss. 9. P. 3027-3037. https://doi.org/10.1039/C5CY01516B

108. Lee J.D., Miller J.B., Shneidman A.V., Sun L., Weaver J.F., Aizenberg J., Biener J., Boscoboinik J.A., Foucher A.C., Frenkel A.I., van der Hoeven J.E.S., Kozinsky B., Marcella N., Montemore M.M., Ngan H.T., O’Connor C. R., Owen C. J., Stacchiola D.J., Stach E.A., Madix R.J., Sautet P., Friend, C.M. // Chem. Rev. 2022. V. 122. Iss. 9. P. 8758-8808. https://doi.org/10.1021/acs.chemrev.1c00967

109. Pei G.X., Liu X.Y., Yang X., Zhang L., Wang A., Li L., Wang H., Wang X., Zhang T. // Acs Catalysis. 2017. Iss. 2. V. 7. P. 1491-1500. https://doi.org/10.1021/acscatal.6b03293

110. Zhu W., Zhang L., Yang P., Chang X., Dong H., Li A., Hu C., Huang Z., Zhao Z., Gong J. // Small. 2018. V. 14. Iss. 7. P. 1703314. https://doi.org/10.1002/smll.201703314

111. Tao F.F., Zhang S., Nguyen L., Zhang X. // Chem. Soc. Rev. 2012. V. 41. Iss. 24. P. 7980-7993. https://doi.org/10.1039/C2CS35185D

112. Bukhtiyarov A.V., Prosvirin I.P., Saraev A.A., Klyushin A.Y., Knop-Gericke A., Bukhtiyarov V.I. //Faraday discuss. 2018. V. 208. P. 255-268. https://doi.org/10.1039/C7FD00219J

113. Nakaya Y., Hayashida E., Shi R., Shimizu K.I., Furukawa S. //J. Am. Chem. Soc. 2023. V. 145. Iss. 5. P. 2985-2998. https://doi.org/10.1021/jacs.2c11481

114. Chen Y., Feng C., Wang W., Liu Z., Li J., Liu C., Pan Y., Liu Y. // Sep. Purif. Technol. 2022. V. 289. P. 120731. https://doi.org/10.1016/j.seppur.2022.120731

115. Foucher A., Ngan H.T., Shirman T., Filie A., Duanmu K., Aizenberg M., Madix R. J., Friend C. M., Aizenberg J., Sautet P., Stach E. A. // Chemarxiv. 2023. https://doi.org/10.26434/chemrxiv-2023-dfxjg

116. Kottayintavida R., Gopalan N.K. //Electrochim. Acta. 2021. V. 384. P. 138405. https://doi.org/10.1016/j.electacta.2021.138405

117. Strasser J.W., Crooks R.M. // Nanomater. 2022. V. 12. Iss. 22. P. 4093. https://doi.org/10.3390/nano12224093

118. Zhou L., Xie X., Xie R., Guo H., Wang M., Wang L. // Int. J. Hydrog. Energy. 2019. V. 44. Iss. 47. P. 25589-25598. https://doi.org/10.1016/j.ijhydene.2019.07.253

119. Jirkovský J.S., Panas I., Ahlberg E., Halasa M., Romani S., Schiffrin D.J. //J. Am. Chem. Soc. 2011. V. 133. Iss. 48. P. 19432-19441. https://doi.org/10.1021/ja206477z

120. Wilson N.M., Priyadarshini P., Kunz S., Flaherty D.W. // J. Catal. 2018. V. 357. P. 163-175. https://doi.org/10.1016/j.jcat.2017.10.028

121. Ricciardulli T., Gorthy S., Adams J.S., Thompson C., Karim A.M., Neurock M., Flaherty, D.W. // J. Am. Chem. Soc. 2021. V. 143. Iss. 14. P. 5445-5464. https://doi.org/10.1021/jacs.1c00539

122. Huang Y., Chen Z.X. // Appl. Surf. Sci. 2022. V. 575. P. 151513. https://doi.org/10.1016/j.apsusc.2021.151513

123. Yang C., Wang G., Liang A., Yue Y., Peng H., Cheng D. // Catal. Commun. 2019. V. 124. P. 41-45. https://doi.org/10.1016/j.catcom.2019.01.012

124. Gao F., Goodman D.W. // Chem. Soc. Rev. 2012. Т. 41. Iss. 24. С. 8009-8020. https://doi.org/10.1039/C2CS35160A

125. Gao F., Wang Y., Goodman D.W. //J. Am. Chem. Soc. 2009. V. 131. Iss. 16. P. 5734-5735. https://doi.org/10.1021/ja9008437

126. Gao F., Wang Y., Goodman D. W. // J. Phys. Chem. C. 2009. V. 113. Iss. 33. P. 14993-15000. https://doi.org/10.1021/jp9053132

127. Han P., Axnanda S., Lyubinetsky I., Goodman D.W. // J. Am. Chem. Soc. 2007. V. 129. Iss. 46. P. 14355-14361. https://doi.org/10.1021/ja074891n

128. Sárkány A., Geszti O., Sáfrán G. // Appl. Catal. A: Gen. 2008. V. 350. Iss. 2. P. 157-163. https://doi.org/10.1016/j.apcata.2008.08.012

129. Venezia A.M., La Parola V., Deganello G., Pawelec B., Fierro J.L.G. // J. Catal. 2003. V. 215. Iss. 2. P. 317-325. https://doi.org/10.1016/S0021-9517(03)00005-8

130. Liu P., Nørskov J.K. // Phys. Chem. Chem. Phys. 2001. V. 3. Iss. 17. P. 3814-3818. https://doi.org/10.1039/B103525H

131. Yuan D., Gong X., Wu R. // J. Phys. Chem. C. 2008. V. 112. Iss. 5. P. 1539-1543. https://doi.org/10.1021/jp076831+

132. Sárkány A., Horvath A., Beck A. // Appl. Catal. A: Gen. 2002. V. 229. Iss. 1-2. P. 117-125 https://doi.org/10.1016/S0926-860X(02)00020-0

133. Mc Cue A.J., Baker R.T., Anderson J.A. // Faraday Discuss. 2016. V. 188. P. 499-523. https://doi.org/10.1039/C5FD00188A

134. Choudhary T.V., Sivadinarayana C., Datye A.K., Kumar D., Goodman D.W. // Catal. Lett. 2003. V. 86. Iss. 1. P. 1-8. https://doi.org/10.1023/A:1022694505504

135. Bonarowska M., Pielaszek J., Juszczyk W., Karpiński Z. // J. Catal. 2000. V. 195. Iss. 2. P. 304-315. https://doi.org/10.1006/jcat.2000.2989

136. Alayoglu S., Tao F., Altoe V., Specht C., Zhu Z., Aksoy F., Butcher D.R., Renzas R.J., Liu Z., Somorjai G.A. // Catal. Lett. 2011. V. 141. Iss. 5. P. 633-640. https://doi.org/10.1007/s10562-011-0565-7

137. Mamatkulov M., Yudanov I.V., Bukhtiyarov A.V., Prosvirin I.P., Bukhtiyarov V.I., Neyman K.M. // J. Phys. Chem. C. 2019. V. 123. P. 8037–8046. https://doi.org/10.1021/acs.jpcc.8b07402

138. Edwards J.K., Carley A.F., Herzing A.A., Kiely C.J., Hutchings G.J. // Faraday Discuss. 2008. V. 138. P. 225-239. https://doi.org/10.1039/B705915A

139. Herzing A.A., Watanabe M., Edwards J.K., Conte M., Tang Z.R., Hutchings G.J., Kiely C.J. // Faraday Discuss. 2008. V. 138. P. 337-351. https://doi.org/10.1039/B706293C

140. Hutchings G.J. // Chem. Commun. 2008. Iss. 10. P. 1148-1164. https://doi.org/10.1039/B712305C

141. Xu J., White T., Li P., He C., Yu J., Yuan W., Han Y.F. // J. Am. Chem. Soc. 2010. V. 132. Iss. 30. P. 10398-10406. https://doi.org/10.1021/ja102617r

142. Edwards J.K., Solsona B.E., Landon P., Carley A.F., Herzing A., Kiely C.J., Hutchings G.J. // J. Catal. 2005. V. 236. Iss. 1. P. 69-79. https://doi.org/10.1016/j.jcat.2005.09.015

143. Ma C., Du Y., Feng J., Cao X., Yang J., Li D. // J. Catal. 2014. V. 317. P. 263-271. https://doi.org/10.1016/j.jcat.2014.06.018

144. Yan X., Bao J., Yuan C., Wheeler J., Lin W.Y., Li R., Jang B.W.L. // J. Catal. 2016. V. 344. P. 194-201 https://doi.org/10.1016/j.jcat.2016.09.018

145. Venezia A.M., La Parola V., Nicolı V., Deganello G. //J. Catal. 2002. V. 212. Iss. 1. P. 56-62. https://doi.org/10.1006/jcat.2002.3778

146. Esparza R. Téllez-Vázquez, O., Rodríguez-Ortiz, G., Ángeles-Pascual, A., Velumani, S., Pérez R. // J. Phys. Chem. C. 2014. V. 118. Iss. 38. P. 22383-22388. https://doi.org/10.1021/jp507794z

147. Liu C.H., Liu R.H., Sun Q.J., Chang J.B., Gao X., Liu Y., Lee S.T., Kang Z.H., Wang S.D. // Nanoscale. 2015. V. 7. Iss. 14. P. 6356-6362. https://doi.org/10.1039/C4NR06855F

148. Kumar N., Ghosh P. // J. Phys. Chem. C. 2016. V. 120. Iss. 50. P. 28654-28663. https://doi.org/10.1021/acs.jpcc.6b10106

149. Kovnir K., Osswald J., Armbrüster M., Giedigkeit R., Ressler T., Grin Y., Schlögl R. // Stud. Surf. Sci. Catal. 2006. V. 162. P. 481-488. https://doi.org/10.1016/S0167-2991(06)80943-2

150. Osswald J., Kovnir K., Armbrüster M., Giedigkeit R., Jentoft R.E., Wild U., Grin Y. Schlögl R. //J. Catal. 2008. V. 258. Iss. 1. P. 219-227. https://doi.org/10.1016/j.jcat.2008.06.014

151. Penner S., Lorenz H., Jochum W., Stöger-Pollach M., Wang D., Rameshan C., Klötzer B. // Appl. Catal. A: Gen. 2009. V. 358. Iss. 2. P. 193-202. https://doi.org/10.1016/j.apcata.2009.02.026

152. Okamoto H. // J. Phase. Eqilibria. Diff. 2008. V. 29. Iss. 5. P. 466. https://doi.org/10.1007/s11669-008-9363-3

153. Predel F. Phase equilibria, crystallographic and thermodynamic data of binary alloys KO... Y-Zr. – Berlin: Springer, 2016.

154. Kovnir K., Armbrüster M., Teschner D., Venkov T.V., Szentmiklósi L., Jentoft F.C., Knop-Gericke A., Grin Yu., Schlögl R. // Surf. Sci. 2009. V. 603. Iss. 10-12. P. 1784-1792. https://doi.org/10.1016/j.susc.2008.09.058

155. Armbrüster M., Kovnir K., Behrens M., Teschner D., Grin Y., Schlögl R. // J. Am. Chem. Soc. 2010. V. 132. Iss. 42. P. 14745-14747. https://doi.org/10.1021/ja106568t

156. Wowsnick G., Teschner D., Kasatkin I., Girgsdies F., Armbrüster M., Zhang A., Grin Y., Schlogl R., Behrens M. // J. Catal. 2014. V. 309. P. 209-220 https://doi.org/10.1016/j.jcat.2013.09.019

157. Collins S.E., Baltanas M.A., Delgado J.J., Borgna A., Bonivardi A.L. //Catal. Today. 2021. V. 381. P. 154-162. https://doi.org/10.1016/j.cattod.2020.07.048

158. Wittkämper H., Maisel S., Moritz M., Grabau M., Görling A., Steinrück H.P., Papp C. // Phys. Chem. Chem. Phys. 2021. V. 23. №. 30. P. 16324-16333. https://doi.org/10.1039/D1CP02458B

159. Chu M., Pan Q., Bian W., Liu Y., Cao M., Zhang C., Lin H., Zhang Q., Xu Y. // J. Catal. 2021. V. 395. P. 36-45. https://doi.org/10.1016/j.jcat.2020.12.015

160. Baumgärtner J.F., Müller A., Docherty S.R., Comas-Vives A., Payard, P.A., Copéret, C. // Chemarxiv. 2023. https://doi.org/10.26434/chemrxiv-2023-qk5f7

161. Osswald J., Giedigkeit R., Jentoft R.E., Armbrüster M., Girgsdies F., Kovnir K., Ressler T., Grin Y., Schlögl R. // J. Catal. 2008. V. 258. Iss. 1. P. 210-218. https://doi.org/10.1016/j.jcat.2008.06.013

162. Rameshan C., Stadlmayr W., Penner S., Lorenz H., Mayr L., Hävecker M., Blume R., Rocha T., Teschner D., Knop-Gericke A., Schlögl R., Zemlyanov D., Memmel N., Klötzer B. // J. Catalysis. 2012. V. 290. P. 126-137. https://doi.org/10.1016/j.jcat.2012.03.009

163. Prinz J., Gaspari R., Pignedoli C.A., Vogt J., Gille P., Armbrüster M., Brune H., Gröning O., Passerone D., Widmer R. // Angew. Chem. 2012. V. 124. Iss. 37. P. 9473-9477. https://doi.org/10.1002/ange.201203787

164. Prinz J., Pignedoli C.A., Stöckl Q.S., Armbrüster M., Brune H., Gröning O., Widmer R., Passerone D. // J. Am. Chem. Soc. 2014. V. 136. Iss. 33. P. 11792-11798. https://doi.org/10.1021/ja505936b

165. Sandoval M., Bechthold P., Orazi V., Gonzalez E.A., Juan A., Jasen P.V. // Appl. Surf. Sci. 2018. V. 435. P. 568-573. https://doi.org/10.1016/j.apsusc.2017.11.140

166. Smirnova N.S., Shlyapin D.A., Mironenko O.O., Anoshkina E.A., Temerev V.L., Shitova N.B., Kochubey D.I., Tsyrul’Nikov P.G. //J. Mol. Catal. A: Chem. 2012. V. 358. P. 152-158. https://doi.org/10.1016/j.molcata.2012.03.010

167. Смирнова Н.С., Мироненко О.О., Шляпин Д.А., Кочубей Д.И., Цырульников П.Г. // Известия Российской академии наук. Серия физическая. 2013. Т. 77. № 9. С. 1317-1320. https://doi.org/10.3103/S106287381309044X

168. Афонасенко Т.Н., Смирнова Н.С., Темерев В.Л., Леонтьева Н.Н., Гуляева Т.И., Цырульников П.Г. // Кинетика и катализ. 2016. Т. 57. № 4. С. 493-500. https://doi.org/10.1134/S0023158416040017

169. Афонасенко Т.Н., Темерев В.Л., Шляпин Д.А., Цырульников П.Г. // Журнал прикладной химии. 2019. Т. 92. № 1. С. 110-116. https://doi.org/10.1134/S1070427219010018X

170. Afonasenko T.N., Temerev V.L., Glyzdova D.V., Leont'eva N.N., Trenikhin, M.V., Prosvirin I.P., Shlyapin D.A. // Mat. Lett. 2021. V. 305. P. 130843. https://doi.org/10.1016/j.matlet.2021.130843

171. Ota A., Armbrüster M., Behrens M., Rosenthal D., Friedrich M., Kasatkin I., Girgsdies F., Zhang W., Wagner R., Schlögl R. // J. Phys. Chem. C. 2011. V. 115. №. 4. P. 1368-1374 https://doi.org/10.1021/jp109226r

172. Смирнова Н.С., Шляпин Д.А., Леонтьева Н.Н., Тренихин М.В., Шитова Н.Б., Кочубей Д.И., Цырульников П.Г. // Известия Российской академии наук. Серия физическая. 2015. Т. 79. №. 9. С. 1335-1335. https://doi.org/10.7868/S0367676515010305

173. Смирнова Н.С., Шляпин Д.А., Тренихин М.В., Кочубей Д.И., Цырульников, П.Г. // Известия ВУЗов. Химия и химическая технология. 2015. Т. 58. №. 7. С. 31-35.

174. Smirnova N.S., Shlyapin D.A., Shitova N.B., Kochubey D.I., Tsyrul’nikov P.G. // J. Mol. Catal. A: Chem. 2015. V. 403. P. 10-14. https://doi.org/10.1016/j.molcata.2015.03.014

175. Schön G. // J. El. Spectr. Rel. Phenomena. 1973. V. 2. Iss. 1. P. 75-86. https://doi.org/10.1016/0368-2048(73)80049-0

176. Wang Z., Yang L., Zhang R., Li L., Cheng Z., Zhou Z. // Catal. Today. 2016. V. 264. P. 37–43. https://doi.org/10.1016/j.cattod.2015.08.018

177. Mashkovsky I.S., Markov P.V., Bragina G.O., Baeva G.N., Rassolov A.V., Bukhtiyarov A.V., Prosvirin I.P., Bukhtiyarov V.I., Stakheev A.Y.// Mendelev. Commun. 2018. V. 28. P. 152–154. https://doi.org/10.1016/j.mencom.2018.03.014

178. Машковский И.С., Марков П.В., Брагина Г.О., Баева Г.Н., Бухтияров А.В., Просвирин И.П., Бухтияров В.И., Стахеев А.Ю. // Кинетика и катализ. 2017. Т. 58. № 4. С. 499–507. https://doi.org/10.1134/S0023158417040127

179. Машковский И.С., Марков П.В., Брагина Г.О., Рассолов А.В., Баева Г.Н., Стахеев А.Ю. // Кинетика и катализ. 2017. Т. 58. № 4. С. 508–520. https://doi.org/10.1134/S0023158417040139

180. Xu J., Su X., Liu X., Pan X., Pei G., Huang Y., Wang X., Zhang T., Geng H. // Appl. Catal. A: Gen. 2016. V. 514. P. 51–59. https://doi.org/10.1016/j.apcata.2016.01.006

181. Kast P., Friedrich M., Girgsdies F., Kröhnert J., Teschner D., Lunkenbein T., Behrens M. // Catal. Today. 2016. V. 260. P. 21–31. https://doi.org/10.1016/j.cattod.2015.05.021

182. Childers D.J., Schweitzer N.M., Shahari S.M.K., Rioux R.M., Miller J.T., Meyer R.J. // J. Catal. 2014. V. 318. P. 75–84. https://doi.org/10.1016/j.jcat.2014.07.016

183. Suwa Y., Ito S., Kameoka S., Tomishige K., Kunimori K. // Appl. Catal. A: Gen. 2004. V. 267. Iss. 1–2. P. 9–16. https://doi.org/10.1016/j.apcata.2004.02.016

184. Tew W., Emerich H., van Bokhoven J.A. // J. Phys. Chem. C. 2011. V. 115. Iss. 17. P. 8457–8465. https://doi.org/10.1021/jp1103164

185. Conant T., Karim A.M., Lebarbier V., Wang Y., Girgsdies F., Schlögl R., Datye A. // J. Catal. 2008. V. 257. Iss. 1. P. 64-70. https://doi.org/10.1016/j.jcat.2008.04.018

186. Zhou H., Yang X., Li L., Liu X., Huang Y., Pan X., Wang A., Li J., Zhang T. // ACS Catal. 2016. V. 6. Iss. 2. P. 1054–1061. https://doi.org/10.1021/acscatal.5b01933

187. Chen Z.X., Neyman K.M., Gordienko A.B., Rösch N. // Phys. Rev. B. 2003. V. 68. Iss. 7. P. 1–8. https://doi.org/10.1103/PhysRevB.68.075417

188. Föttinger K. // Catalysis Reviews. 2013. V. 55. P. 289-367. https://doi.org/10.1080/01614940.2013.796192

189. Rodriguez J.A. // J. Phys. Chem. 1994. V. 98. P. 5758–5764. https://doi.org/10.1021/j100073a031

190. Friedrich M., Teschner D., Knop-Gericke A., Armbrüster M. // J. Catal. 2012. V. 285. P. 41–47. https://doi.org/10.1016/j.jcat.2011.09.013

191. Glyzdova D.V., Khramov E.V., Smirnova N.S., Prosvirin I.P., Bukhtiyarov A.V., Trenikhin M.V., Gulyaeva T.I., Vedyagin A.A., Shlyapin D.A., Lavrenov A.V. // Appl. Surf. Sci. 2019. V. 483. P. 730-741. https://doi.org/10.1016/j.apsusc.2019.03.215

192. Глыздова Д.В., Смирнова Н.С., Темерев В.Л., Храмов Е.В., Гуляева Т.И., Тренихин М.В., Шляпин Д.А., Цырульников П.Г. // Журнал прикладной химии. 2017. Т. 90. № 12. С. 1575-1585. https://doi.org/10.1134/S1070427217120035

193. Glyzdova D.V., Afonasenko T.N., Khramov E.V., Leont’eva N.N., Trenikhin M.V., Prosvirin I.P., Bukhtiyarov A.V. Shlyapin D.A. // Top. Catal. 2020. V. 63. Iss. 1. P. 139-151. https://doi.org/10.1007/s11244-019-01215-9

194. Zhou H., Yang X., Wang A., Miao S., Liu X., Pan X., Su Y., Li L., Tan Y., Zhang T. // Chinese J. Catal. 2016. V. 37. Iss. 5. P. 692-699. https://doi.org/10.1016/S1872-2067(15)61090-7

195. Yang L., Guo Y., Long J., Xia L., Li D., Xiao J., Liu H. // Chem. Commun. 2019. V. 55. Iss. 97. P. 14693-14696 https://doi.org/10.1039/C9CC06442G

196. Zhang Y., Fu Q., Cui Y., Mu R., Jin L., Bao X. // Phys. Chem. Chem. Phys. 2013. V. 15. Iss. 43. P. 19042-19048. https://doi.org/10.1039/C3CP52115J

197. Xiao J., Pan X., Guo S., Ren P., Bao X. // J. Am. Chem. Soc. 2015. V. 137. Iss. 1. P. 477-482. https://doi.org/10.1021/ja511498s

198. Li H., Xiao J., Fu Q., Bao X. // Proceed. Nat. Acad. Sci. 2017. V. 114. Iss. 23. P. 5930-5934. https://doi.org/10.1073/pnas.1701280114

199. Mashkovsky I.S., Markov P.V., Bragina G.O., Baeva G.N., Bukhtiyarov A.V., Prosvirin I.P., Bukhtiyarov V.I., Stakheev A.Y. //Кинетика и катализ. 2017. Т. 58. С. 499-507. https://doi.org/10.1134/S0023158417040127

200. Zhang X., Guo Z., Lv P., Xiong R., Wang Z., Zhou Z., Zhang, M. // J. Coll. Interf. Sci. 2021. V. 602. P. 459-468. https://doi.org/10.1016/j.jcis.2021.06.024


Review

For citations:


Shlyapin D.A., Yurpalova D.V., Afonasenko T.N., Temerev V.L., Lavrenov A.V. Efficient catalysts based on substitutional solid solutions and intermetallic compounds of palladium for acetylene selective hydrogenation to ethylene. Kataliz v promyshlennosti. 2023;23(6):17-51. (In Russ.) https://doi.org/10.18412/1816-0387-2023-6-17-51

Views: 390


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)