

Efficient catalysts based on substitutional solid solutions and intermetallic compounds of palladium for acetylene selective hydrogenation to ethylene
https://doi.org/10.18412/1816-0387-2023-6-17-51
Abstract
The features of the catalytic action of bimetals such as Pd-Ag, Pd-Cu, Pd-Au, Pd-Ga, Pd-Zn on the conversion of acetylene to ethylene are considered. Two factors that determine the influence of the second metal on palladium – the ensemble effect (geometric effect) and the ligand effect (electronic effect) were taken into account. The relationship between the parameters obtained using calculation methods and experimentally established characteristics are shown. The calculated parameters are thermodynamic and kinetic parameters of the adsorption interaction of the main components of the reaction medium and intermediates with the catalyst surface, the structure of active ensembles and the experimental ones are the structural parameters of bimetallic phases, the electronic state of their components, and catalytic properties of bimetals. The examples illustrating the possibility of the modifier atoms entering into active ensembles and the participation of the sites formed from modifier atoms in the catalysis of individual elementary stages are presented.
About the Authors
D. A. ShlyapinRussian Federation
D. V. Yurpalova
Russian Federation
T. N. Afonasenko
Russian Federation
V. L. Temerev
Russian Federation
A. V. Lavrenov
Russian Federation
References
1. Заббаров Р.Р., Хамитов А.Р. // Российская наука в современном мире. – 2021. – С. 111-113.
2. Rodriguez J.A. // Surf. Sci. Rep. 1996. V. 24. Iss. 7-8. P. 223-287. https://doi.org/10.1016/0167-5729(96)00004-0
3. Yi C.W., Luo K., Wei T., Goodman D.W. // J. Phys. Chem. B. 2005. V. 109. №. 39. P. 18535-18540. https://doi.org/10.1021/jp053515r
4. Liao F., Lo T.W.B., Tsang S.C.E. // Chem. Cat. Chem. 2015. V. 7. Iss. 14. P. 1998-2014. https://doi.org/10.1002/cctc.201500245
5. Bukhtiyarov A.V., Panafidin M.A., Chetyrin I.A., Prosvirin I.P., Mashkovsky I.S., Smirnova N.S., Markov P.V., Zubavichus Y.V., Stakheev A.Yu., Bukhtiyarov V.I. //Appl. Surf. Sci. 2020. V. 525. P. 146493. https://doi.org/10.1016/j.apsusc.2020.146493
6. Kovnir K., Armbrüster M., Teschner D., Venkov T.V., Jentoft F.C., Knop-Gericke A., Grin Yu., Schlögl R. // Sci. Technol. Adv. Mat. 2007. V. 8. Iss. 5. P. 420-427. https://doi.org/10.1016/j.stam.2007.05.004
7. Studt F., Abild-Pedersen F., Bligaard T., Sørensen R.Z., Christensen C.H., Nørskov, J.K. //Science. 2008. V. 320. Iss. 5881. P. 1320-1322. https://doi.org/10.1126/science.1156660
8. Шляпин Д.А. , Глыздова Д.В. , Афонасенко Т.Н. , Темерев В.Л. , Цырульников П.Г. // Кинетика и катализ. 2019. Т.60. №4. С.479-485. https://doi.org/10.1134/S0453881119040208
9. Глыздова Д.В. , Смирнова Н.С. , Леонтьева Н.Н. , Герасимов Е.Ю. , Просвирин И.П. , Вершинин В.И. , Шляпин Д.А. , Цырульников П.Г. // Кинетика и катализ. 2017. Т.58. №2. С.152-158. https://doi.org/10.7868/S0453881117020058
10. Шляпин Д.А., Глыздова Д.В., Афонасенко Т.Н., Темерев В.Л., А.В. Лавренов А.В. // Катализ в промышленности. 2022. Т.22. №6. С.51-67 https://doi.org/10.18412/1816-0387-2022-6-51-67
11. Yang Y., Wang W., Liu Y., Wang F., Zhang Z., Lei Z. // Int. J. Hydrogen Energy. 2015. V. 40. P. 2225-2230. https://doi.org/10.1016/j.ijhydene.2014.12.054
12. Yin Z., Zhang Y., Chen K., Li J., Li W., Tang P., Zhao H., Zhu Q., Bao X., Ma D. // Sci. Rep. 2014. V. 4. P. 4288. https://doi.org/10.1038/srep04288
13. Benipal N., Qi J., Liu Q., Li W. // Appl. Catal. B: Env. 2017. V. 210. P. 121–130. https://doi.org/10.1016/j.apcatb.2017.02.082
14. Li R., Yao W., Jin Y., Jia W., Chen X., Chen J., Zheng J., Hu Y., Han D., Zhao J. // Chem. Eng. J. 2018. V. 351. P. 995–1005. https://doi.org/10.1016/j.cej.2018.06.146
15. Rassolov A.V., Krivoruchenko D.S., Medvedev M.G., Mashkovsky I.S., Stakheev A.Y., Svitanko I.V. // Mendelev. Commun. 2017. V. 27. Iss. 6. P. 615–617. https://doi.org/10.1016/j.mencom.2017.11.026
16. Ravanchi M.T., Sahebdelfar S. // Appl. Catal. A: Gen. 2016. V. 525. P. 197–203. https://doi.org/10.1016/j.apcata.2016.07.014
17. Gao X., Zhou Y., Jing F., Luo J., Huang Q., Chu W. // Chinese J. Chem. 2017. V. 35. Iss. 6. P. 1009–1015. https://doi.org/10.1002/cjoc.201600865
18. Liu Y., Zhao J., He Y., Feng J., Wu T., Li D. // J. Catal. 2017. V. 348. P. 135-145 https://doi.org/10.1016/j.jcat.2017.02.020
19. He Y., Liu Y., Yang P., Du Y., Feng J., Cao X., Yang J., Li D. //J. Catal. 2015. V. 330. P. 61-70. https://doi.org/10.1016/j.jcat.2015.06.017
20. Grünert W., Brückner A., Hofmeister H., Claus P. // J. Phys. Chem. B. 2004. V. 108. Iss. 18. P. 5709-5717. https://doi.org/10.1021/jp049855e
21. Claus P., Hofmeister H. // J. Phys. Chem. B. 1999. V. 103. Iss. 14. P. 2766-2775. https://doi.org/10.1021/jp983857f
22. Bron M., Teschner D., Knop-Gericke A., Jentoft F.C., Krohnert J., Hohmeyer J., Volckmar C., Steinhauer B., Schlogl R., Claus P. // Phys. Chem. Chem. Phys. 2007. V. 9. Iss. 27. P. 3559-3569. https://doi.org/10.1039/B701011G
23. Mohammad A.B., Yudanov I.V., Lim K.H., Neyman K.M., Rösch N. // J. Phys. Chem. C. 2008. V. 112. Iss. 5. P. 1628-1635. https://doi.org/10.1021/jp0765190
24. Karakhanov E.A., Maximov A.L., Zolotukhina A.V., Yatmanova N., Rosenberg E. // Appl. Organomet. Chem. 2015. V. 29. P. 777–784. https://doi.org/10.1002/aoc.3367
25. González S., Neyman K.M., Shaikhutdinov S., Freund H.-J., Illas F. // J. Phys. Chem. C. 2007. V. 111. P. 6852–6856. https://doi.org/10.1021/jp071584v
26. Wang W., Cao G. // J. Nanopart. Res. 2007. V. 9. P. 1153–1161. https://doi.org/10.1007/s11051-006-9203-5
27. Balerna A., Deganello G., Liotta L., Longo A., Martorana A., Meneghini C., Mobilio S., Venezia A.M. // J. Non-Cryst. Solids. 2001. V. 293–295. P. 682–687. https://doi.org/10.1016/S0022-3093(01)00771-2
28. Allison E.G., Bond G.C. // Catal. Rev. 1972. V. 7. Iss. 2. P. 233–289. https://doi.org/10.1080/01614947208062259
29. Лякишев Н.П. Диаграммы состояния двойных металлических систем: Справочник: В 3 т.: Т. 1 / Под общ. ред. Н.П. Лякишева. – М.: Машиностроение, 1996. – С. 992.
30. Denton A.R., Ashcroft N.W. // Phys. Rev. A. 1991. V. 43. Iss. 6. P. 3161–3164. https://doi.org/10.1103/PhysRevA.43.3161
31. Pei G.X., Liu X., Wang A., Lee A.F., Isaacs M.A., Li L., Pan X., Yang X., Wang X., Tai Z., Wilson K., Zhang T. // ACS Catal. 2015. V. 5. Iss. 6. P. 3717–3725. https://doi.org/10.1021/acscatal.5b00700
32. Kim W.J., Moon S.H. // Catal. Today. 2012. V. 185. Iss. 1. P. 2–16. https://doi.org/10.1016/j.cattod.2011.09.037
33. Рассолов А.В., Марков П.В., Брагина Г.О., Баева Г.Н., Криворученко Д.С., Машковский И.С., Якушев И.А., Варгафтик М.Н., Стахеев А.Ю. // Кинетика и катализ. 2016. Т. 57. № 6. С. 865–873. https://doi.org/10.1134/S0023158416060112
34. Huang D.C., Chang K.H., Pong W.F., Tseng P.K., Hung K.J., Huang W.F. // Catal. Lett. 1998. V. 53. Iss. 3–4. P. 155–159. https://doi.org/10.1023/A:1019022326090
35. Ponec V. // Appl. Catal. A: Gen. 2001. V. 222. Iss. 1–2. P. 31–45. https://doi.org/10.1016/S0926-860X(01)00828-6
36. Barbieri P.F., De Siervo A., Carazzolle M.F., Landers R., Kleiman G.G. // J. Electron Spectrosc. 2004. V. 135. Iss. 2–3. P. 113–118. https://doi.org/10.1016/j.elspec.2004.02.121
37. Khan N.A., Shaikhutdinov S., Freund H.J. // Catal. Lett. 2006. V. 108. Iss. 3. P. 159-164. https://doi.org/10.1007/s10562-006-0041-y
38. Эллерт О.Г., Цодиков М.В., Николаев С.А., Новоторцев В.М. // Успехи химии. 2014. Т. 83. № 8. С. 718-732. https://doi.org/10.1070/RC2014v083n08ABEH004432
39. Tang J., Deng L., Deng H., Xiao S., Zhang X., Hu W. // J. Phys. Chem. C. 2014. V. 118. Iss. 48. P. 27850–27860. https://doi.org/10.1021/jp507710k
40. Hewage J.W. // Mater. Chem. Phys. 2016. V. 174. P. 187–194. https://doi.org/10.1016/j.matchemphys.2016.02.074
41. Стахеев А.Ю., Смирнова Н.С., Марков П.В., Баева Г.Н., Брагина Г.О., Рассолов А.В., Машковский И.С. // Кинетика и катализ. 2018. Т. 59. № 5. С. 601-609. https://doi.org/10.1134/S0023158418050154
42. Zhao M., Sloof W.G., Böttger A.J. // Int. J. Hyd. En. 2018. V. 43. № 4. P. 2212–2223. https://doi.org/10.1016/j.ijhydene.2017.12.039
43. Николаев С.А., Занавескин Л.Н., Смирнов В.В., Аверьянов В.А., Занавескин К.Л. // Успехи химии. 2009. Т. 78. №. 3. С. 248-265. https://doi.org/10.1070/RC2009v078n03ABEH003893
44. Teschner D., Borsodi J., Wootsch A., Révay Z., Havecker M., Knop-Gericke A., Jackson S. D. Schlogl R. // Sci. 2008. V. 320. Iss. 5872. P. 86-89. https://doi.org/10.1126/science.115520
45. Tiruppathi P., Low J.J., Chan A.S.Y., Bare S.R., Meyer R.J. // Catalysis Today. 2011. V. 165. Iss. 1. P. 106–111. https://doi.org/10.1016/j.cattod.2011.02.029
46. Phillips J., Auroux A., Bergeret G., Massardier J., Renouprez A. // J. Phys. Chem. 1993. V. 97. Iss. 14. P. 3565-3570. https://doi.org/10.1021/j100116a021
47. Jin Y., Datye A.K., Rightor E., Gulotty R., Waterman W., Smith M., Holbrook M., Maj J., Blackson J. // J. Catal. 2001. V. 203. Iss. 2. P. 292-306. https://doi.org/10.1006/jcat.2001.3347
48. Zea H., Lester K., Datye A. K., Rightor E., Gulotty R., Waterman W., Smith M. // Appl. Catal. A Gen. 2005. V. 282. Iss. 1-2. P. 237-245. https://doi.org/10.1016/j.apcata.2004.12.026
49. Praserthdam P., Ngamsom B., Bogdanchikova N., Phatanasri S., Pramotthana M. // Appl. Catal. A: Gen. 2002. V. 230. Iss. 1-2. P. 41-51 https://doi.org/10.1016/S0926-860X(01)00993-0
50. Ngamsom B., Bogdanchikova N., Borja M. A., Praserthdam P. // Catal. Comm. 2004. V. 5. Iss. 5. P. 243-248. https://doi.org/10.1016/j.catcom.2004.02.007
51. Lamb R.N., Ngamsom B., Trimm D.L., Gong B., Silveston P.L., Praserthdam P. // Appl. Catal. A: Gen. 2004. V. 268. Iss. 1-2. P. 43-50. https://doi.org/10.1016/j.apcata.2004.03.041
52. Zhang Q., Li J., Liu X., Zhu Q. //Appl. Catal. A: Gen. 2000. V. 197. Iss. 2. P. 221-228. https://doi.org/10.1016/S0926-860X(99)00463-9
53. Pachulski A., Schödel R., Claus P. // Appl. Catal. A: Gen. 2011. V. 400. Iss. 1-2. P. 14-24 https://doi.org/10.1016/j.apcata.2011.03.019
54. Lee J.H., Kim S.K., Ahn I.Y., Kim W J., Moon S.H. // Catal. Comm. 2011. V. 12. Iss. 13. P. 1251-1254. https://doi.org/10.1016/j.catcom.2011.04.015
55. Khan N.A., Uhl A., Shaikhutdinov S., Freund H.J. // Surf. Sci. 2006. V. 600. Iss. 9. P. 1849-1853. https://doi.org/10.1016/j.susc.2006.02.016
56. Christensen A., Ruban A.V., Stoltze P., Jacobsen K.W., Skriver H.L., Norskov J.K., Besenbacher F. // Phys. Rev. B. 1997. V. 56. Iss. 10. P. 5822. https://doi.org/10.1103/PhysRevB.56.5822
57. Sheth P.A., Neurock M., Smith C.M. // J. Phys. Chem. B. 2005. V. 109. Iss. 25. P. 12449-12466. https://doi.org/10.1021/jp050194a
58. Mei D., Neurock M., Smith C.M. // J. Catal. 2009. V. 268. Iss. 2. P. 181-195. https://doi.org/10.1016/j.jcat.2009.09.004
59. Глыздова Д.В., Смирнова Н.С., Леонтьева Н.Н., Герасимов Е.Ю., Просвирин И.П., Вершинин В.И., Шляпин Д.А., Цырульников П.Г. // Кинетика и катализ. 2017. Т.58. № 2. С.152-158. https://doi.org/10.1134/S0023158417020057
60. Glyzdova D.V., Vedyagin A.A., Tsapina A.M., Kaichev V.V., Trigub A.L., Trenikhin M.V., Shlyapin D.A., Tsyrulnikov P.G., Lavrenov A.V. // Appl. Catal. A: Gen. 2018. V.563. P.18-27. https://doi.org/10.1016/j.apcata.2018.06.029
61. Glyzdova D.V., Afonasenko T.N., Khramov E.V., Leont’eva N.N., Trenikhin M.V., Kremneva A.M., Shlyapin D.A. // Mol. Catal. 2021. V. 511. P. 111717:1-9. https://doi.org/10.1016/j.mcat.2021.111717
62. Huang W., Pyrz W., Lobo R.F., Chen J.G. // Appl. Catal. A: Gen. 2007. V. 333. Iss. 2. P. 254-263. https://doi.org/10.1016/j.apcata.2007.09.017
63. Liu J., Lan L., Li R., Liu X., Wu C. // Int. J. Hydrogen Energ. 2016. V. 41. Iss. 2. P. 951–958. https://doi.org/10.1016/j.ijhydene.2015.10.144
64. Gholinejad M., Khosravi F., Afrasi M., Sansano J.M., Nájera C. // Catal. Sci. Technol. 2021. V. 11. Iss. 8. P. 2652-2702. https://doi.org/10.1039/D0CY02339F
65. Fodor A., Hell Z., Pirault-Roy L. // Appl. Catal. A: Gen. 2014. V. 484. P. 39-50. https://doi.org/10.1016/j.apcata.2014.07.002
66. Nasrollahzadeh M., Jaleh B., Ehsani A. // New J. Chem. 2015. V. 39. Iss. 2. P. 1148-1153. https://doi.org/10.1039/C4NJ01788A
67. Rossy C., Majimel J., Delapierre M.T., Fouquet E., Felpin F.X. // J. Organomet. Chem. 2014. V. 755. P. 78-85. https://doi.org/10.1016/j.jorganchem.2014.01.006
68. Rassolov A.V., Baeva G.N., Mashkovsky I.S., Stakheev A.Y. // Mendelev. Commun. 2018. V. 28. Iss. 5. P. 538-540. https://doi.org/10.1016/j.mencom.2018.09.030
69. Theologides C.P., Olympiou G.G., Savva P G., Kapnisis K., Anayiotos A., Costa C.N. // Appl. Catal. B: Env. 2017. V. 205. P. 443-454. https://doi.org/10.1016/j.apcatb.2016.12.055
70. Ye T., Durkin D.P., Banek N.A., Wagner M.J., Shuai D. // ACS Appl. Mater. Interfaces. 2017. V. 9. Iss. 33. P. 27421-27426. https://doi.org/10.1021/acsami.7b09192
71. Jung S., Bae S., Lee W. // Environ. Sci. Technol. 2014. V. 48. Iss. 16. P. 9651-9658. https://doi.org/10.1021/es502263p
72. Śrębowata A., Lisowski W., Sobczak J.W., Karpiński Z. // Catal. Today. 2011. V. 175. Iss. 1. P. 576-584. https://doi.org/10.1016/j.cattod.2011.03.038
73. Bonarowska M., Machynskyy O., Łomot D., Kemnitz E., Karpiński Z. // Catal. Today. 2014. V. 235. P. 144-151. https://doi.org/10.1016/j.cattod.2014.01.029
74. Hina R., Arafa I., Al-Khateeb F. // React. Kinet. Mech. Catal. 2016. V. 41. Iss. 1. С. 29-38. https://doi.org/10.3184/146867816X14490551502250
75. Liu L., Fan F., Jiang Z., Gao X., Wei J., Fang T. // J. Phys. Chem. C. 2017. V. 121. Iss. 47. P. 26287-26299. https://doi.org/10.1021/acs.jpcc.7b06166
76. Nie X., Jiang X., Wang H., Luo W., Janik M.J., Chen Y., Guo X., Song C. // ACS Catal. 2018. V. 8. Iss. 6. P. 4873-4892. https://doi.org/10.1021/acscatal.7b04150
77. Jiang X., Nie X., Wang X., Wang H., Koizumi N., Chen Y., Guo X., Song C. // J. Catal. 2019. V. 369. P. 21-32. https://doi.org/10.1016/j.jcat.2018.10.001
78. Wang F., Lu G. // Int. J. Hydrogen Energ. 2010. V. 35. Iss. 13. P. 7253-7260. https://doi.org/10.1016/j.ijhydene.2009.12.186
79. Nikolaev S.A., Golubina E.V., Shilina M.I. //Appl. Catal. B: Env. 2017. V. 208. P. 116-127. https://doi.org/10.1016/j.apcatb.2017.02.038
80. Liu J., Fan X., Sun C. Q., Zhu W. // Appl. Catal. A: Gen. 2017. V. 538. P. 66-73. https://doi.org/10.1016/j.apcata.2017.03.019
81. Shit S.C., Singuru R., Pollastri S., Joseph B., Rao B.S., Lingaiah N., Mondal J. // Catal. Sci. Technol. 2018. V. 8. Iss. 8. P. 2195-2210. https://doi.org/10.1039/C8CY00325D
82. Hu C., Zhai X., Zhao Y., Bian K., Zhang J., Qu L., Zhang H., Luo H. // Nanoscale. 2014. V. 6. Iss. 5. P. 2768-2775. https://doi.org/10.1039/C3NR05722D
83. Pereira M.M., Noronha F.B., Schmal M. // Catal. Today. 1993. V. 16. Iss. 3-4. P. 407-415. https://doi.org/10.1016/0920-5861(93)80080-K
84. Li M., Shen J. //Thermochim. Acta. 2001. V. 379. Iss. 1-2. P. 45-50. https://doi.org/10.1016/S0040-6031(01)00600-1
85. Hofmann T., Yu T.H., Folse M., Weinhardt L., Bar M., Zhang Y., Merinov B.V., Myers D.J., Goddard W.A., Heske C. // J. Phys. Chem. C. 2012. V. 116. Iss. 45. P. 24016-24026. https://doi.org/10.1021/jp303276z
86. Hu S., Scudiero L., Ha S. // Electrochemistry communications. 2014. V. 38. P. 107-109. https://doi.org/10.1016/j.elecom.2013.11.010
87. Gunji T., Ochiai H., Ohira T., Liu Y., Nakajima Y., Matsumoto, F. // Chem. Mater. 2020. V. 32. Iss. 16. P. 6855-6863. https://doi.org/10.1021/acs.chemmater.0c01137
88. Ilinitch O.M., Cuperus F.P., Nosova L.V., Gribov E.N. // Stud. Surf. Sci. Catal. 2000. V. 130. P. 443-448. https://doi.org/10.1016/S0167-2991(00)80997-0
89. Lambert S., Heinrichs B., Brasseur A., Rulmont A., Pirard J.P. // Appl. Catal. A: Gen. 2004. V. 270. Iss. 1-2. P. 201-208. https://doi.org/10.1016/j.apcata.2004.05.005
90. Носова Л.В., Зайковский В.И., Калинкин А.В., Талзи Е.П., Паукштис Е.А., Рындин Ю.А. // Кинетика и катализ. 1995. Т. 36. № 3. С. 362-369.
91. Molenbroek A.M., Haukka S., Clausen B.S. // J. Phys. Chem. B. 1998. V. 102. Iss. 52. P. 10680-10689. https://doi.org/10.1021/jp9822081
92. Ball M.R., Rivera-Dones K.R., Gilcher E.B., Ausman S.F., Hullfish C.W., Lebrón E.A., Dumesic J.A. // ACS Catal. 2020. V. 10. Iss. 15. P. 8567-8581. https://doi.org/10.1021/acscatal.0c01536
93. Kim S.K., Lee J.H., Ahn I.Y., Kim W.J., Moon S.H. // Appl. Catal. A: Gen. 2011. V. 401. Iss. 1-2. P. 12-19. https://doi.org/10.1016/j.apcata.2011.04.048
94. Cao X., Mirjalili A., Wheeler J., Xie W., Jang B.W.L. //Front. Chem. Sci. Eng. 2015. V. 9. Iss. 4. P. 442-449. https://doi.org/10.1007/s11705-015-1547-x
95. Niu J., Liu H., Jin Y., Fan B., Qi W., Ran J. // Int. J. Hyd. En. 2022. V. 47. Iss. 15. 19. P. 9183-9200 https://doi.org/10.1016/j.ijhydene.2022.01.021
96. Natesakhawat S., Lekse J.W., Baltrus J.P., Ohodnicki Jr P.R., Howard B.H., Deng X., Matranga C. //Acs Catal. 2012. V. 2. Iss. 8. P. 1667-1676. https://doi.org/10.1021/cs300008g
97. Liu C., Yang B., Tyo E., Seifert S., De Bartolo J., von Issendorff B., Zapol P., Vajda S., Curtiss L.A. // J. Am. Chem. Soc. 2015. V. 137. Iss. 27. P. 8676-8679. https://doi.org/10.1021/jacs.5b03668
98. Liu S., Niu Y., Wang Y., Chen J., Quan X., Zhang X., Zhang B. // Chem. Commun. 2020. V. 56. Iss. 47. P. 6372-6375. https://doi.org/10.1039/D0CC01889A
99. Fernandez-Garcia M., Conesa J.C., Clotet A., Ricart J.M., López N., Illas F. // J. Phys. Chem. B. 1998. V. 102. Iss. 1. P. 141-147. https://doi.org/10.1021/jp971973x
100. Kyriakou G., Boucher M.B., Jewell A.D., Lewis E.A., Lawton T.J., Baber A.E., Tierney H.L., Flytzani-Stephanopoulos M., Sykes E.C.H. //Science. 2012. V. 335. Iss. 6073. P. 1209-1212. https://doi.org/10.1126/science.1215864
101. Mc Cue A.J., Mc Ritchie C.J., Shepherd A.M., Anderson J.A. // J. Catal. 2014. V. 319. P. 127-135. https://doi.org/10.1016/j.jcat.2014.08.016
102. Friedrich M., Villaseca S. A., Szentmiklósi L., Teschner D., Armbrüster M. // Materials. 2013. V. 6. Iss. 7. P. 2958-2977. https://doi.org/10.3390/ma6072958
103. Mc Cue A.J., Anderson J.A. // Front. Chem. Sci. Eng. 2015. V. 9. Iss. 2. P. 142-153. https://doi.org/10.1007/s11705-015-1516-4
104. Mc Cue A.J., Shepherd A.M., Anderson J.A. // Catal. Sci. Technol. 2015. V. 5. Iss. 5. P. 2880-2890. https://doi.org/10.1039/C5CY00253B
105. Zhang R., Xue M., Wang B., Ling L. // Appl. Surf. Sci. 2019. V. 481. P. 421-432. https://doi.org/10.1016/j.apsusc.2019.03.006
106. Pei G., Liu X., Chai M., Wang A., Zhang T. // Chinese J. Catal. 2017. V. 38. Iss. 9. P. 1540-1548. https://doi.org/10.1016/S1872-2067(17)62847-X
107. Liu Y., He Y., Zhou D., Feng J., Li D. // Catal. Sci. Technol. 2016. V. 6. Iss. 9. P. 3027-3037. https://doi.org/10.1039/C5CY01516B
108. Lee J.D., Miller J.B., Shneidman A.V., Sun L., Weaver J.F., Aizenberg J., Biener J., Boscoboinik J.A., Foucher A.C., Frenkel A.I., van der Hoeven J.E.S., Kozinsky B., Marcella N., Montemore M.M., Ngan H.T., O’Connor C. R., Owen C. J., Stacchiola D.J., Stach E.A., Madix R.J., Sautet P., Friend, C.M. // Chem. Rev. 2022. V. 122. Iss. 9. P. 8758-8808. https://doi.org/10.1021/acs.chemrev.1c00967
109. Pei G.X., Liu X.Y., Yang X., Zhang L., Wang A., Li L., Wang H., Wang X., Zhang T. // Acs Catalysis. 2017. Iss. 2. V. 7. P. 1491-1500. https://doi.org/10.1021/acscatal.6b03293
110. Zhu W., Zhang L., Yang P., Chang X., Dong H., Li A., Hu C., Huang Z., Zhao Z., Gong J. // Small. 2018. V. 14. Iss. 7. P. 1703314. https://doi.org/10.1002/smll.201703314
111. Tao F.F., Zhang S., Nguyen L., Zhang X. // Chem. Soc. Rev. 2012. V. 41. Iss. 24. P. 7980-7993. https://doi.org/10.1039/C2CS35185D
112. Bukhtiyarov A.V., Prosvirin I.P., Saraev A.A., Klyushin A.Y., Knop-Gericke A., Bukhtiyarov V.I. //Faraday discuss. 2018. V. 208. P. 255-268. https://doi.org/10.1039/C7FD00219J
113. Nakaya Y., Hayashida E., Shi R., Shimizu K.I., Furukawa S. //J. Am. Chem. Soc. 2023. V. 145. Iss. 5. P. 2985-2998. https://doi.org/10.1021/jacs.2c11481
114. Chen Y., Feng C., Wang W., Liu Z., Li J., Liu C., Pan Y., Liu Y. // Sep. Purif. Technol. 2022. V. 289. P. 120731. https://doi.org/10.1016/j.seppur.2022.120731
115. Foucher A., Ngan H.T., Shirman T., Filie A., Duanmu K., Aizenberg M., Madix R. J., Friend C. M., Aizenberg J., Sautet P., Stach E. A. // Chemarxiv. 2023. https://doi.org/10.26434/chemrxiv-2023-dfxjg
116. Kottayintavida R., Gopalan N.K. //Electrochim. Acta. 2021. V. 384. P. 138405. https://doi.org/10.1016/j.electacta.2021.138405
117. Strasser J.W., Crooks R.M. // Nanomater. 2022. V. 12. Iss. 22. P. 4093. https://doi.org/10.3390/nano12224093
118. Zhou L., Xie X., Xie R., Guo H., Wang M., Wang L. // Int. J. Hydrog. Energy. 2019. V. 44. Iss. 47. P. 25589-25598. https://doi.org/10.1016/j.ijhydene.2019.07.253
119. Jirkovský J.S., Panas I., Ahlberg E., Halasa M., Romani S., Schiffrin D.J. //J. Am. Chem. Soc. 2011. V. 133. Iss. 48. P. 19432-19441. https://doi.org/10.1021/ja206477z
120. Wilson N.M., Priyadarshini P., Kunz S., Flaherty D.W. // J. Catal. 2018. V. 357. P. 163-175. https://doi.org/10.1016/j.jcat.2017.10.028
121. Ricciardulli T., Gorthy S., Adams J.S., Thompson C., Karim A.M., Neurock M., Flaherty, D.W. // J. Am. Chem. Soc. 2021. V. 143. Iss. 14. P. 5445-5464. https://doi.org/10.1021/jacs.1c00539
122. Huang Y., Chen Z.X. // Appl. Surf. Sci. 2022. V. 575. P. 151513. https://doi.org/10.1016/j.apsusc.2021.151513
123. Yang C., Wang G., Liang A., Yue Y., Peng H., Cheng D. // Catal. Commun. 2019. V. 124. P. 41-45. https://doi.org/10.1016/j.catcom.2019.01.012
124. Gao F., Goodman D.W. // Chem. Soc. Rev. 2012. Т. 41. Iss. 24. С. 8009-8020. https://doi.org/10.1039/C2CS35160A
125. Gao F., Wang Y., Goodman D.W. //J. Am. Chem. Soc. 2009. V. 131. Iss. 16. P. 5734-5735. https://doi.org/10.1021/ja9008437
126. Gao F., Wang Y., Goodman D. W. // J. Phys. Chem. C. 2009. V. 113. Iss. 33. P. 14993-15000. https://doi.org/10.1021/jp9053132
127. Han P., Axnanda S., Lyubinetsky I., Goodman D.W. // J. Am. Chem. Soc. 2007. V. 129. Iss. 46. P. 14355-14361. https://doi.org/10.1021/ja074891n
128. Sárkány A., Geszti O., Sáfrán G. // Appl. Catal. A: Gen. 2008. V. 350. Iss. 2. P. 157-163. https://doi.org/10.1016/j.apcata.2008.08.012
129. Venezia A.M., La Parola V., Deganello G., Pawelec B., Fierro J.L.G. // J. Catal. 2003. V. 215. Iss. 2. P. 317-325. https://doi.org/10.1016/S0021-9517(03)00005-8
130. Liu P., Nørskov J.K. // Phys. Chem. Chem. Phys. 2001. V. 3. Iss. 17. P. 3814-3818. https://doi.org/10.1039/B103525H
131. Yuan D., Gong X., Wu R. // J. Phys. Chem. C. 2008. V. 112. Iss. 5. P. 1539-1543. https://doi.org/10.1021/jp076831+
132. Sárkány A., Horvath A., Beck A. // Appl. Catal. A: Gen. 2002. V. 229. Iss. 1-2. P. 117-125 https://doi.org/10.1016/S0926-860X(02)00020-0
133. Mc Cue A.J., Baker R.T., Anderson J.A. // Faraday Discuss. 2016. V. 188. P. 499-523. https://doi.org/10.1039/C5FD00188A
134. Choudhary T.V., Sivadinarayana C., Datye A.K., Kumar D., Goodman D.W. // Catal. Lett. 2003. V. 86. Iss. 1. P. 1-8. https://doi.org/10.1023/A:1022694505504
135. Bonarowska M., Pielaszek J., Juszczyk W., Karpiński Z. // J. Catal. 2000. V. 195. Iss. 2. P. 304-315. https://doi.org/10.1006/jcat.2000.2989
136. Alayoglu S., Tao F., Altoe V., Specht C., Zhu Z., Aksoy F., Butcher D.R., Renzas R.J., Liu Z., Somorjai G.A. // Catal. Lett. 2011. V. 141. Iss. 5. P. 633-640. https://doi.org/10.1007/s10562-011-0565-7
137. Mamatkulov M., Yudanov I.V., Bukhtiyarov A.V., Prosvirin I.P., Bukhtiyarov V.I., Neyman K.M. // J. Phys. Chem. C. 2019. V. 123. P. 8037–8046. https://doi.org/10.1021/acs.jpcc.8b07402
138. Edwards J.K., Carley A.F., Herzing A.A., Kiely C.J., Hutchings G.J. // Faraday Discuss. 2008. V. 138. P. 225-239. https://doi.org/10.1039/B705915A
139. Herzing A.A., Watanabe M., Edwards J.K., Conte M., Tang Z.R., Hutchings G.J., Kiely C.J. // Faraday Discuss. 2008. V. 138. P. 337-351. https://doi.org/10.1039/B706293C
140. Hutchings G.J. // Chem. Commun. 2008. Iss. 10. P. 1148-1164. https://doi.org/10.1039/B712305C
141. Xu J., White T., Li P., He C., Yu J., Yuan W., Han Y.F. // J. Am. Chem. Soc. 2010. V. 132. Iss. 30. P. 10398-10406. https://doi.org/10.1021/ja102617r
142. Edwards J.K., Solsona B.E., Landon P., Carley A.F., Herzing A., Kiely C.J., Hutchings G.J. // J. Catal. 2005. V. 236. Iss. 1. P. 69-79. https://doi.org/10.1016/j.jcat.2005.09.015
143. Ma C., Du Y., Feng J., Cao X., Yang J., Li D. // J. Catal. 2014. V. 317. P. 263-271. https://doi.org/10.1016/j.jcat.2014.06.018
144. Yan X., Bao J., Yuan C., Wheeler J., Lin W.Y., Li R., Jang B.W.L. // J. Catal. 2016. V. 344. P. 194-201 https://doi.org/10.1016/j.jcat.2016.09.018
145. Venezia A.M., La Parola V., Nicolı V., Deganello G. //J. Catal. 2002. V. 212. Iss. 1. P. 56-62. https://doi.org/10.1006/jcat.2002.3778
146. Esparza R. Téllez-Vázquez, O., Rodríguez-Ortiz, G., Ángeles-Pascual, A., Velumani, S., Pérez R. // J. Phys. Chem. C. 2014. V. 118. Iss. 38. P. 22383-22388. https://doi.org/10.1021/jp507794z
147. Liu C.H., Liu R.H., Sun Q.J., Chang J.B., Gao X., Liu Y., Lee S.T., Kang Z.H., Wang S.D. // Nanoscale. 2015. V. 7. Iss. 14. P. 6356-6362. https://doi.org/10.1039/C4NR06855F
148. Kumar N., Ghosh P. // J. Phys. Chem. C. 2016. V. 120. Iss. 50. P. 28654-28663. https://doi.org/10.1021/acs.jpcc.6b10106
149. Kovnir K., Osswald J., Armbrüster M., Giedigkeit R., Ressler T., Grin Y., Schlögl R. // Stud. Surf. Sci. Catal. 2006. V. 162. P. 481-488. https://doi.org/10.1016/S0167-2991(06)80943-2
150. Osswald J., Kovnir K., Armbrüster M., Giedigkeit R., Jentoft R.E., Wild U., Grin Y. Schlögl R. //J. Catal. 2008. V. 258. Iss. 1. P. 219-227. https://doi.org/10.1016/j.jcat.2008.06.014
151. Penner S., Lorenz H., Jochum W., Stöger-Pollach M., Wang D., Rameshan C., Klötzer B. // Appl. Catal. A: Gen. 2009. V. 358. Iss. 2. P. 193-202. https://doi.org/10.1016/j.apcata.2009.02.026
152. Okamoto H. // J. Phase. Eqilibria. Diff. 2008. V. 29. Iss. 5. P. 466. https://doi.org/10.1007/s11669-008-9363-3
153. Predel F. Phase equilibria, crystallographic and thermodynamic data of binary alloys KO... Y-Zr. – Berlin: Springer, 2016.
154. Kovnir K., Armbrüster M., Teschner D., Venkov T.V., Szentmiklósi L., Jentoft F.C., Knop-Gericke A., Grin Yu., Schlögl R. // Surf. Sci. 2009. V. 603. Iss. 10-12. P. 1784-1792. https://doi.org/10.1016/j.susc.2008.09.058
155. Armbrüster M., Kovnir K., Behrens M., Teschner D., Grin Y., Schlögl R. // J. Am. Chem. Soc. 2010. V. 132. Iss. 42. P. 14745-14747. https://doi.org/10.1021/ja106568t
156. Wowsnick G., Teschner D., Kasatkin I., Girgsdies F., Armbrüster M., Zhang A., Grin Y., Schlogl R., Behrens M. // J. Catal. 2014. V. 309. P. 209-220 https://doi.org/10.1016/j.jcat.2013.09.019
157. Collins S.E., Baltanas M.A., Delgado J.J., Borgna A., Bonivardi A.L. //Catal. Today. 2021. V. 381. P. 154-162. https://doi.org/10.1016/j.cattod.2020.07.048
158. Wittkämper H., Maisel S., Moritz M., Grabau M., Görling A., Steinrück H.P., Papp C. // Phys. Chem. Chem. Phys. 2021. V. 23. №. 30. P. 16324-16333. https://doi.org/10.1039/D1CP02458B
159. Chu M., Pan Q., Bian W., Liu Y., Cao M., Zhang C., Lin H., Zhang Q., Xu Y. // J. Catal. 2021. V. 395. P. 36-45. https://doi.org/10.1016/j.jcat.2020.12.015
160. Baumgärtner J.F., Müller A., Docherty S.R., Comas-Vives A., Payard, P.A., Copéret, C. // Chemarxiv. 2023. https://doi.org/10.26434/chemrxiv-2023-qk5f7
161. Osswald J., Giedigkeit R., Jentoft R.E., Armbrüster M., Girgsdies F., Kovnir K., Ressler T., Grin Y., Schlögl R. // J. Catal. 2008. V. 258. Iss. 1. P. 210-218. https://doi.org/10.1016/j.jcat.2008.06.013
162. Rameshan C., Stadlmayr W., Penner S., Lorenz H., Mayr L., Hävecker M., Blume R., Rocha T., Teschner D., Knop-Gericke A., Schlögl R., Zemlyanov D., Memmel N., Klötzer B. // J. Catalysis. 2012. V. 290. P. 126-137. https://doi.org/10.1016/j.jcat.2012.03.009
163. Prinz J., Gaspari R., Pignedoli C.A., Vogt J., Gille P., Armbrüster M., Brune H., Gröning O., Passerone D., Widmer R. // Angew. Chem. 2012. V. 124. Iss. 37. P. 9473-9477. https://doi.org/10.1002/ange.201203787
164. Prinz J., Pignedoli C.A., Stöckl Q.S., Armbrüster M., Brune H., Gröning O., Widmer R., Passerone D. // J. Am. Chem. Soc. 2014. V. 136. Iss. 33. P. 11792-11798. https://doi.org/10.1021/ja505936b
165. Sandoval M., Bechthold P., Orazi V., Gonzalez E.A., Juan A., Jasen P.V. // Appl. Surf. Sci. 2018. V. 435. P. 568-573. https://doi.org/10.1016/j.apsusc.2017.11.140
166. Smirnova N.S., Shlyapin D.A., Mironenko O.O., Anoshkina E.A., Temerev V.L., Shitova N.B., Kochubey D.I., Tsyrul’Nikov P.G. //J. Mol. Catal. A: Chem. 2012. V. 358. P. 152-158. https://doi.org/10.1016/j.molcata.2012.03.010
167. Смирнова Н.С., Мироненко О.О., Шляпин Д.А., Кочубей Д.И., Цырульников П.Г. // Известия Российской академии наук. Серия физическая. 2013. Т. 77. № 9. С. 1317-1320. https://doi.org/10.3103/S106287381309044X
168. Афонасенко Т.Н., Смирнова Н.С., Темерев В.Л., Леонтьева Н.Н., Гуляева Т.И., Цырульников П.Г. // Кинетика и катализ. 2016. Т. 57. № 4. С. 493-500. https://doi.org/10.1134/S0023158416040017
169. Афонасенко Т.Н., Темерев В.Л., Шляпин Д.А., Цырульников П.Г. // Журнал прикладной химии. 2019. Т. 92. № 1. С. 110-116. https://doi.org/10.1134/S1070427219010018X
170. Afonasenko T.N., Temerev V.L., Glyzdova D.V., Leont'eva N.N., Trenikhin, M.V., Prosvirin I.P., Shlyapin D.A. // Mat. Lett. 2021. V. 305. P. 130843. https://doi.org/10.1016/j.matlet.2021.130843
171. Ota A., Armbrüster M., Behrens M., Rosenthal D., Friedrich M., Kasatkin I., Girgsdies F., Zhang W., Wagner R., Schlögl R. // J. Phys. Chem. C. 2011. V. 115. №. 4. P. 1368-1374 https://doi.org/10.1021/jp109226r
172. Смирнова Н.С., Шляпин Д.А., Леонтьева Н.Н., Тренихин М.В., Шитова Н.Б., Кочубей Д.И., Цырульников П.Г. // Известия Российской академии наук. Серия физическая. 2015. Т. 79. №. 9. С. 1335-1335. https://doi.org/10.7868/S0367676515010305
173. Смирнова Н.С., Шляпин Д.А., Тренихин М.В., Кочубей Д.И., Цырульников, П.Г. // Известия ВУЗов. Химия и химическая технология. 2015. Т. 58. №. 7. С. 31-35.
174. Smirnova N.S., Shlyapin D.A., Shitova N.B., Kochubey D.I., Tsyrul’nikov P.G. // J. Mol. Catal. A: Chem. 2015. V. 403. P. 10-14. https://doi.org/10.1016/j.molcata.2015.03.014
175. Schön G. // J. El. Spectr. Rel. Phenomena. 1973. V. 2. Iss. 1. P. 75-86. https://doi.org/10.1016/0368-2048(73)80049-0
176. Wang Z., Yang L., Zhang R., Li L., Cheng Z., Zhou Z. // Catal. Today. 2016. V. 264. P. 37–43. https://doi.org/10.1016/j.cattod.2015.08.018
177. Mashkovsky I.S., Markov P.V., Bragina G.O., Baeva G.N., Rassolov A.V., Bukhtiyarov A.V., Prosvirin I.P., Bukhtiyarov V.I., Stakheev A.Y.// Mendelev. Commun. 2018. V. 28. P. 152–154. https://doi.org/10.1016/j.mencom.2018.03.014
178. Машковский И.С., Марков П.В., Брагина Г.О., Баева Г.Н., Бухтияров А.В., Просвирин И.П., Бухтияров В.И., Стахеев А.Ю. // Кинетика и катализ. 2017. Т. 58. № 4. С. 499–507. https://doi.org/10.1134/S0023158417040127
179. Машковский И.С., Марков П.В., Брагина Г.О., Рассолов А.В., Баева Г.Н., Стахеев А.Ю. // Кинетика и катализ. 2017. Т. 58. № 4. С. 508–520. https://doi.org/10.1134/S0023158417040139
180. Xu J., Su X., Liu X., Pan X., Pei G., Huang Y., Wang X., Zhang T., Geng H. // Appl. Catal. A: Gen. 2016. V. 514. P. 51–59. https://doi.org/10.1016/j.apcata.2016.01.006
181. Kast P., Friedrich M., Girgsdies F., Kröhnert J., Teschner D., Lunkenbein T., Behrens M. // Catal. Today. 2016. V. 260. P. 21–31. https://doi.org/10.1016/j.cattod.2015.05.021
182. Childers D.J., Schweitzer N.M., Shahari S.M.K., Rioux R.M., Miller J.T., Meyer R.J. // J. Catal. 2014. V. 318. P. 75–84. https://doi.org/10.1016/j.jcat.2014.07.016
183. Suwa Y., Ito S., Kameoka S., Tomishige K., Kunimori K. // Appl. Catal. A: Gen. 2004. V. 267. Iss. 1–2. P. 9–16. https://doi.org/10.1016/j.apcata.2004.02.016
184. Tew W., Emerich H., van Bokhoven J.A. // J. Phys. Chem. C. 2011. V. 115. Iss. 17. P. 8457–8465. https://doi.org/10.1021/jp1103164
185. Conant T., Karim A.M., Lebarbier V., Wang Y., Girgsdies F., Schlögl R., Datye A. // J. Catal. 2008. V. 257. Iss. 1. P. 64-70. https://doi.org/10.1016/j.jcat.2008.04.018
186. Zhou H., Yang X., Li L., Liu X., Huang Y., Pan X., Wang A., Li J., Zhang T. // ACS Catal. 2016. V. 6. Iss. 2. P. 1054–1061. https://doi.org/10.1021/acscatal.5b01933
187. Chen Z.X., Neyman K.M., Gordienko A.B., Rösch N. // Phys. Rev. B. 2003. V. 68. Iss. 7. P. 1–8. https://doi.org/10.1103/PhysRevB.68.075417
188. Föttinger K. // Catalysis Reviews. 2013. V. 55. P. 289-367. https://doi.org/10.1080/01614940.2013.796192
189. Rodriguez J.A. // J. Phys. Chem. 1994. V. 98. P. 5758–5764. https://doi.org/10.1021/j100073a031
190. Friedrich M., Teschner D., Knop-Gericke A., Armbrüster M. // J. Catal. 2012. V. 285. P. 41–47. https://doi.org/10.1016/j.jcat.2011.09.013
191. Glyzdova D.V., Khramov E.V., Smirnova N.S., Prosvirin I.P., Bukhtiyarov A.V., Trenikhin M.V., Gulyaeva T.I., Vedyagin A.A., Shlyapin D.A., Lavrenov A.V. // Appl. Surf. Sci. 2019. V. 483. P. 730-741. https://doi.org/10.1016/j.apsusc.2019.03.215
192. Глыздова Д.В., Смирнова Н.С., Темерев В.Л., Храмов Е.В., Гуляева Т.И., Тренихин М.В., Шляпин Д.А., Цырульников П.Г. // Журнал прикладной химии. 2017. Т. 90. № 12. С. 1575-1585. https://doi.org/10.1134/S1070427217120035
193. Glyzdova D.V., Afonasenko T.N., Khramov E.V., Leont’eva N.N., Trenikhin M.V., Prosvirin I.P., Bukhtiyarov A.V. Shlyapin D.A. // Top. Catal. 2020. V. 63. Iss. 1. P. 139-151. https://doi.org/10.1007/s11244-019-01215-9
194. Zhou H., Yang X., Wang A., Miao S., Liu X., Pan X., Su Y., Li L., Tan Y., Zhang T. // Chinese J. Catal. 2016. V. 37. Iss. 5. P. 692-699. https://doi.org/10.1016/S1872-2067(15)61090-7
195. Yang L., Guo Y., Long J., Xia L., Li D., Xiao J., Liu H. // Chem. Commun. 2019. V. 55. Iss. 97. P. 14693-14696 https://doi.org/10.1039/C9CC06442G
196. Zhang Y., Fu Q., Cui Y., Mu R., Jin L., Bao X. // Phys. Chem. Chem. Phys. 2013. V. 15. Iss. 43. P. 19042-19048. https://doi.org/10.1039/C3CP52115J
197. Xiao J., Pan X., Guo S., Ren P., Bao X. // J. Am. Chem. Soc. 2015. V. 137. Iss. 1. P. 477-482. https://doi.org/10.1021/ja511498s
198. Li H., Xiao J., Fu Q., Bao X. // Proceed. Nat. Acad. Sci. 2017. V. 114. Iss. 23. P. 5930-5934. https://doi.org/10.1073/pnas.1701280114
199. Mashkovsky I.S., Markov P.V., Bragina G.O., Baeva G.N., Bukhtiyarov A.V., Prosvirin I.P., Bukhtiyarov V.I., Stakheev A.Y. //Кинетика и катализ. 2017. Т. 58. С. 499-507. https://doi.org/10.1134/S0023158417040127
200. Zhang X., Guo Z., Lv P., Xiong R., Wang Z., Zhou Z., Zhang, M. // J. Coll. Interf. Sci. 2021. V. 602. P. 459-468. https://doi.org/10.1016/j.jcis.2021.06.024
Review
For citations:
Shlyapin D.A., Yurpalova D.V., Afonasenko T.N., Temerev V.L., Lavrenov A.V. Efficient catalysts based on substitutional solid solutions and intermetallic compounds of palladium for acetylene selective hydrogenation to ethylene. Kataliz v promyshlennosti. 2023;23(6):17-51. (In Russ.) https://doi.org/10.18412/1816-0387-2023-6-17-51